

ISMA Course Catalogue 2024/2025 for International (Erasmus+) Students Master of Computer Systems

Please note some subject`s names, ECTS and codes may be changed during the study year.

Student can choose any subject from Autumn Semester or any subject from Spring Semester, depends on which semester student is going to study in ISMA.

Master students in order to expand their course can get an individual plan of studies and to join courses delivered for Bachelor students. In this case these elected subjects will also be reflected at a Transcript of Records. Orientation meeting with ISMA coordinator is compulsory.

ISMA will inform the student about possible changes and according alternatives will be offered. Changes in Learning Agreement will be done then. ISMA International Relations department karina.lazareva@isma.lv and erasmus@isma.lv

2024/2025 st.year			
Course Code	ECTS		
MA0331	Machine Learning Algorithms	6	
IN1243	Big Data Architectures	6	
IN1244	Introduction to Quantum Computing	3	
IN0686	WEB Application Security Fundamentals	3	
MA0329	Mathematics for System Analysts	6	
IN4003	System Approach to Computer System Design	6	
IN0695	Programming for Data Science	9	
IN1242	Databases and SQL	3	
IN0697	Data Analysis	3	

Study program	Computer Systems
ECTS	6
Author (s)	Andrejs Bondarenko, Dr. Comp. Sc. docent, Department of Natural Science and Computer Technology
Preliminary knowledge, Related study courses	Algorithms and Data Structures
Aim	To provide students with a deep understanding of artificial neural networks and their applications. Students will learn how to implement and evaluate neural network models using appropriate software and tools such as Keras and PyTorch. They will also gain knowledge of other machine learning algorithms and learn when to choose these algorithms over neural networks. Upon completion of this course, students will be able to develop and apply artificial neural networks to solve real-world problems and choose the appropriate algorithm for a given task.
Planned learning outcomes	
Knowledge	 Understanding of the theoretical foundations of feedforward neural networks, convolutional neural networks, and their applications. Knowledge of other machine learning algorithms, such as linear regression, logistic regression, and decision trees. Knowledge of backpropagation, regularization, optimization techniques, and transfer learning.
Skills	 Ability to design and implement neural network models using appropriate software and tools, such as TensorFlow and Keras. Ability to critically evaluate the results of machine learning models, including neural networks, and make informed decisions about model selection and deployment.
Competencies	 Ability to make informed decisions about machine learning algorithms and technologies to support data- driven decision-making within an organization. Ability to communicate machine learning concepts and results to stakeholders with varying levels of technical knowledge.
Literature and other sources of information:	
Compulsory reading	 Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, Aurélien Géron, O'Reilly Media, 2019. Mastering Machine Learning Algorithms: Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and

ISMA study course Machine Learning Algorithms

	understanding how they work, 2nd Edition by
	Giuseppe Bonaccorso 2020
	3. Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville 2016
	4. Deep Learning for Coders with fastai and
	PyTorch: AI Applications Without a PhD, Jeremy
	Howard and Sylvain Gugger, 2020.
	5. The Elements of Statistical Learning Data Mining,
	Inference, and Prediction (2nd ed., 12th printing),
	Trevor Hastie, Robert Tibshirani, Jerome
	Friedman, 2017.
Recommended	1. The Hundred-Page Machine Learning Book,
	Andriy Burkov, 2019.
	2. Designing Machine Learning Systems, Chip
	Huyen, O'Reilly Media, 2022.
	3. Neural Networks and Deep Learning: A
	Textbook, Charu C. Aggarwal, 2018.

Week	Topic	Type of training		Academic hours	
			full- time	part-time intramural	
1	1	 Introduction to Machine Learning and Neural Networks Overview of machine learning and its applications Introduction to neural networks and their history Types of neural networks 	3	2	
2	2	 Linear Regression Introduction to linear regression Understanding the assumptions of linear regression Optimization techniques for linear regression 	3	2	
3	3	 Logistic Regression Introduction to logistic regression Understanding the assumptions of logistic regression Optimization techniques for logistic regression 	3	2	
4	4	 Fundamentals of Feedforward Neural Networks Basic architecture of a feedforward neural network Activation functions and their properties Forward propagation and output computation 	3	2	
5	5	 Backpropagation and Gradient Descent The concept of error and loss function Backpropagation algorithm for weight updates Gradient descent optimization and its variants 	3	2	

5	6	Overfitting, Regularization and Early Stopping	3	2
		 Understanding overfitting and its causes 		
		• Regularization techniques such as L1, L2, and		
		dropout		
		• Early stopping as a way to prevent overfitting		
7	7	Decision Trees	3	2
		Introduction to decision trees		
		• Recursive partitioning algorithm		
		• Criteria for selecting optimal splits		
8	8	Random Forests	3	2
		Introduction to random forests		
		• Advantages and disadvantages of random		
		forests		
		• Random forests for feature selection		
9	9	Convolutional Neural Networks (CNNs)	3	2
		• Introduction to convolutional neural networks		
		• Architecture and components of CNNs		
		• Applications of CNNs in computer vision tasks		
10	10	Recurrent Neural Networks (RNNs)	3	2
		• Introduction to recurrent neural networks		
		• Architecture and components of RNNs		
		• Applications of RNNs in natural language		
		processing and time series analysis		
11	11	Long Short-Term Memory (LSTM) Networks	3	2
		• The limitations of classical RNNs		
		• Introduction to LSTM networks		
		• Applications of LSTM in sequence modeling		
		and prediction		
12	12	Autoencoders and Unsupervised Learning	3	2
		Introduction to autoencoders		
		• Unsupervised learning using autoencoders		
		• Applications of autoencoders in dimensionality		
		reduction and data compression		
13	13	Transfer Learning and Fine-Tuning	3	2
		• Introduction to transfer learning		
		• Fine-tuning pre-trained models for new tasks		
		• Applications of transfer learning in various		
		domains		
14	14	Keras and PyTorch	3	2
		 Introduction to PyTorch and Keras 		
		• Building neural network models using PyTorch		
		and Keras		
		• Visualization and interpretation of neural		
		network models using Tensorboard		
15	15	Interpretability and Explainability in ML and Neural	3	2
		Networks		
		• Interpretability and explainability in ML		
		algorithms (non-ANN)		
		Methods for interpreting neural network models		
16	16	Case Studies and Applications	3	2

	 Case studies of neural networks in various domains such as healthcare, finance, and entertainment Discussion of ethical considerations in the use of neural networks Future directions and challenges in the field of neural networks 		
	Total:	48	32 ac.h
		ac.h	

Self-study work	Ac.hours for full-time/ part-time intramural/ distance studies extramural	Planned learning outcomes
1. Compulsory reading, sources, and methodological materials learning	24/32/40	Knowledge, Skills, and Competencies: Students studied the core concepts of machine learning principles.
2. Familiarization with supervised learning techniques.	24/32/40	Knowledge, Skills, and Competencies: Students demonstrate knowledge of supervised learning and algorithms implementing classification and regression problems.
3. Familiarization with unsupervised learning techniques, model selection, and ensemble methods.	24/32/40	Knowledge, Skills, and Competencies: Students demonstrate their knowledge of the unsupervised algorithms as well as models selection and result interpretation; additionally demonstrate knowledge of ensemble models
4. Practical Exercises	24/32/40	Knowledge, Skills, and Competencies: Students can set up a machine learning project, prepare data, train models, assess their performance, and present the results.
Total:	112/128/160	

Study work	Knowledge	Skills	Competences	% of final evaluation
------------	-----------	--------	-------------	--------------------------

1.	Home works	+	+	+	50
	(Self-study work)				
2.	Exam	+	+	+	50

Level	Requirements
Very high (10 –with distinction 9 – excellent)	 10 (with distinction) - knowledge, skills and competences exceed the requirements of the study course and demonstrate the ability to perform independent research as well as the deep understanding of problems; 9 (excellent) - knowledge, skills and competences fully meet the requirements of the study course, student is able
	to apply the acquired knowledge independently;
High (8 –very good 7 - good)	8 (very good) – the requirements of the study course are fully met, however, there is insufficient understanding of individual issues to use the knowledge independently for the solution of more complex problems;
	7 (good) – the requirements of the study course are met in general, however, sometimes the inability to use the acquired knowledge independently is detected;
Average (6 – almost good	6 (almost good) –. the requirements of the study course
5 – satisfactory	are met in general, however insufficient understanding of
4 –almost satisfactory)	knowledge is detected:
	5 (satisfactory) - the requirements of the study course
	are met for the most part, however insufficient
	understanding of many problems and inability to apply
	the acquired knowledge is detected;
	4 (almost satisfactory) – the requirements of the study
	course are met, for the most part, however insufficient
	as considerable difficulties in the practical application of
	the acquired knowledge are stated:
Low	3 (bad) – knowledge is superficial and incomplete: the
(3 - 1 - negative evaluation)	student is unable to use it in specific situations;
	2 (very bad) – superficial and incomplete knowledge of
	only some problems, the most part of the study course is
	not mastered;
	1 (very very bad) – an absence of understanding of the main
	problems of the subject matter, almost no knowledge of the
	content of the study course.

ISMA study course Big Data Architecture

Study programme	Computer Systems
ECTS	6
Preliminary	Algorithms and Data Structures, Data Modelling, Databases and
knowledge,	Database Management Systems, SQL.
Related study	
courses	
Aim	The course aims at describing the big data processing framework, both in terms of methodologies and technologies. The course is focused on the relevant architecture of Big Data Systems, their building, implementation and management. The course emphasizes the skills and knowledge to identify and communicate business system needs, to develop right Big Data system architecture and software/hardware infrastructure and implement it into organizations to improve business performance and get profit from available data.
Planned learning	
outcomes	
Knowledge	
	 Big Data frameworks Mining of Big Data Processing of data streams Analysis of time series Recommender systems Analysis of social networks.
Skills	
	 Understand important aspects of Big Data. Ability to apply acquired knowledge for understanding data and select suitable methods for processing and analyzing Big Data.
Competencies	
	Apply Big Data related technologies in developing applications to solve common problems faced by organisations.
Literature and other sources of information:	
Compulsory reading	 Saurabh Shrivastava, Solutions Architect's Handbook: Kick-start your career as a solutions architect by learning architecture design principles and strategies, 2nd Edition, March 21, 2020, 490 pages, ISBN- 978-1838645649. Modern Big Data Architectures: A Multi-Agent Systems Perspective 1st Edition by Dominik Ryzko, 2020 Dipanker Jyoti, James A. Hutcherson, Salesforce Architect's Handbook: A Comprehensive End-to-End Solutions Guide 1st ed., Jan 21, 2021, ISBN - 978-1484266304. Dominik Ryzko, Modern Big Data Architectures, March 2020, Publisher(s): Wiley, ISBN: 9781119597841
Recommended	 Francesco Corea , An Introduction to Data: Everything You Need to Know About AI, Big Data and Data Science, Series: Studies in Big Data №50, Publisher: Springer, 2019, ISBN: 9783030044671 Phillips-Wren, Gloria; McKniff, Sueanne, Overcoming Resistance to Big Data and Operational Changes Through

Interactive Data Visualization, Series: Big Data 2020-dec 01 vol. 8
iss. 6, 2020
3. Sherif Sakr, Albert Y. Zomaya, Encyclopedia of Big Data
Technologies, 2019.

Image: space of the system o	Week	Торіс	Academic hours	
1Introduction.64What is Big Data Architecture? Definiton of Big Data Architecture. Evolution of Big Data Architecture642Big Data Architecture and Its Sources Big Data Platforms Big Data Architecture Use Cases643Big Data and Its Technical Challenges Typical Big Data system architecture and Big Data instruments Storage techniques. Databases Hadoop cosystem Architecture principles for realtime Big Data Systems Big Data Systems Architecture principles for realtime Big Data Systems644NOSQL Database Systems Big Data Analysis and Technologies645Data Streams646Big Data Analysis and Technologies647Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL648Data visualization wisualization) End2End use case64			full- time	Part-Time intramural
2 Big Data Architecture and Its Sources Big Data Platforms Big Data Architecture Use Cases 6 4 3 Big Data and Its Technical Challenges Typical Big Data system architecture and Big Data instruments 6 4 3 Big Data and Its Technical Challenges Typical Big Data system architecture and Big Data instruments 6 4 5 Storage techniques. Databases Hadoop cosystem Architecture principles for realtime Big Data systems Big Data Systems implementation Management of Big Data Systems 6 4 4 NOSQL Database Systems 6 4 5 Data Streams 6 4 6 Big Data Analysis and Technologies 6 4 7 Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL 6 4 8 Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case 6 4	1	Introduction. What is Big Data Architecture? Definiton of Big Data Architecture. Evolution of Big Data Architecture	6	4
3Big Data and Its Technical Challenges Typical Big Data system architecture and Big Data instruments Storage techniques. Databases Hadoop Distributed File System Hadoop essentials Hadoop essentials Hadoop ecosystem Architecture principles for realtime Big Data systems Big Data Systems implementation Management of Big Data Systems644NOSQL Database Systems 6645Data Streams646Big Data Analysis and Technologies647Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL648Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case64	2	Big Data Architecture and Its Sources Big Data Platforms Big Data Architecture Use Cases	6	4
4 NOSQL Database Systems 6 4 5 Data Streams 6 4 6 Big Data Analysis and Technologies 6 4 7 Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL 6 4 8 Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case 6 4	3	Big Data and Its Technical ChallengesTypical Big Data system architecture and Big Data instrumentsStorage techniques. Databases Hadoop Distributed File System Hadoop ecosystem Architecture principles for realtime Big Data systems Big Data Systems implementation Management of Big Data Systems	6	4
5 Data Streams 6 4 6 Big Data Analysis and Technologies 6 4 7 Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL 6 4 8 Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case 6 4	4	NOSOL Database Systems	6	4
6 Big Data Analysis and Technologies 6 4 7 Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL 6 4 8 Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case 6 4	5	Data Streams	6	4
7 Introducing Apache Spark 6 4 Spark Component/Tools and In Depth Study RDDs, Spark SQL 6 4 8 Data visualization & ML: Apache 6 4 Spark (+ Zeppelin + Vegas/Helium as libraries for 6 4 end2End use case	6	Big Data Analysis and Technologies	6	4
8 Data visualization & ML: Apache 6 4 Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case	7	Introducing Apache Spark Spark Component/Tools and In Depth Study RDDs, Spark SQL	6	4
Tota 10 a b 20 a b	8	Data visualization & ML: Apache Spark (+ Zeppelin + Vegas/Helium as libraries for visualization) End2End use case	6	4

Self-study work	Ac.hours for full-time/ Part-Time intramural/ Part-Time extramural	Planned learning outcomes
Lambda Architecture	56/64/80	Knowledge, Skills and Competencies: Explain and compare the architecture of contemporary Big Data tools and platform
Kappa Architecture	56/64/80	Knowledge, Skills and Competencies: Explain and compare the architecture of contemporary Big Data tools and platform
Total:	112/128/160	

Stu	udy work	Knowledge	Skills	Competences	% of final evaluation
1.	Home works (Self-study work)	+	+	+	50
2.	Exam	+	+	+	50

Level	Requirements
Very high (10 – with distinction	10 (with distinction) - knowledge, skills and competences
9 – excellent)	exceed the requirements of the study course and demonstrate
	the ability to perform independent research as well as the
	deep understanding of problems;
	9 (excellent) - knowledge, skills and competences fully
	meet the requirements of the study course, student is able
	to apply the acquired knowledge independently;
High (8 –very good	8 (very good) – the requirements of the study course are
7 - good)	fully met, however, there is insufficient understanding of
	individual issues to use the knowledge independently for the
	solution of more complex problems;
	7 (good) – the requirements of the study course are met in
	general, however, sometimes the inability to use the
	acquired knowledge independently is detected;
Average (6 – almost good	6 (almost good) –. the requirements of the study course
5 – satisfactory	are met in general, however insufficient understanding of
4 –almost satisfactory)	some problems and inability to apply the acquired
	knowledge is detected;
	5 (satisfactory) – the requirements of the study course
	are met for the most part, however insufficient
	understanding of many problems and inability to apply
	the acquired knowledge is detected;
	4 (almost satisfactory) – the requirements of the study
	course are met, for the most part, however insufficient

	understanding of some main concepts is detected as well as considerable difficulties in the practical application of the acquired knowledge are stated;
Low (3 – 1 – negative evaluation)	 3 (bad) – knowledge is superficial and incomplete; the student is unable to use it in specific situations; 2 (very bad) – superficial and incomplete knowledge of only some problems, the most part of the study course is not mastered; 1 (very very bad) – an absence of understanding of the main problems of the subject matter, almost no knowledge of the content of the study course.

Study programme	Computer Systems
ECTS	6
Preliminary	Mathematics for System Analytics
knowledge,	
Related study	
courses	
Aim	The purpose of the course is to acquaint students with the basic ideas and
	main operations and algorithms in Quantum Computing.
Planned learning	
outcomes	
Knowledge	
	 Understand the difference between classical and quantum computing. Understand the mathematical description of quantum states and basic quantum operations. Understand the quantum logic and algorithms and programming ideas.
Skills	
	 Be able to explain and compare the difference between classical and quantum computing. Be able to perform basic quantum computing operations Be able to understand and use the concepts of qubits in quantum gates. Be able to explain the basic structure of quantum algorithms. Be able to understand the simplest quantum programs
Competencies	5. De uble to understand the simplest quantum programs.
	 Understand the benefits of quantum computing Understand the basics quantum computing operations and algorithms. Initial understanding of quantum programming languages.
Literature and other	
sources of	
information:	
Compulsory reading	1. Quantum Computing for Everyone. Chris Bernhard. MIT Press (March 19,2019), 214 pages, ISBN: 0262539535
	 Quantum Computing Fundamentals 1st Edition by Easttom II r (2021) A First Introduction to Quantum Computing and Information. Bernard Zygelman. Springer; 1st ed. 2018 edition (October 4, 2018), 250 pages, ISBN-10: 3319916289
Recommended	 Ciaran Hughes, Joshua Isaacson. Quantum Computing for the Quantum Curious. Springer; 1st ed. 2021 edition (March 22, 2021) 202 pages Introduction to Classical and Quantum Computing Thomas G. Wong <u>https://www.thomaswong.net/</u>
	3. Quantum Country by A. Matuschack and M. Nielsen
	https://quantum.country/

ISMA study course Introduction to Quantum Computing

Study course content and schedule of contact hours

Week	Торіс	Academ	ic hours
		full- time	Part-Time intramural

1	Historical aspects of	6	4
	quantum computing. Linear		
	algebra review for quantum		
	computing. Inner product,		
	vector transformations,		
	Unitary matrices, tensor		
	product, bra-ket notation.		
2	Basics of quantum	6	4
	mechanics for quantum		
	computing: postulates,		
	interference, measurement,		
	superposition, entanglement.		
3	Qubits and quantum states	6	4
4	Classical and quantum logic	6	4
	gates		
	and circuits.		
5	Quantum operations	6	4
6	Simple quantum algorithms.	6	4
	Factoring (Shor) and search		
	(Grover) algorithms		
7	Cryptography classical and	6	4
	quantum. Teleportation.		
8	Introduction to quantum	6	4
	programming.		
	Total	48 ac.h	32 ac.h

Description of students' self-studies organization and assignments

Self-study work	Ac hours for full-time/ Part-Time intramural/ Part-Time extramural	Planned learning outcomes
Quantum computing operations.	56/64/80	Knowledge, Skills and Competencies: skills to make and understand quantum operations
Quantum logic, algorithms and circles and realization	56/64/80	Knowledge, Skills and Competencies: understanding and realization of quantum algorithms
Total:	112/128/160	

St	udy work	Knowledge	Skills	Competences	% of final evaluation
1.	Home works (Self-study work)	+	+	+	50
2.	Exam	+	+	+	50

Level	Requirements
Very high (10 –with	10 (with distinction) - knowledge, skills and competences
distinction	exceed the requirements of the study course and demonstrate
9 – excellent)	the ability to perform independent research as well as the
	deep understanding of problems;
	9 (excellent) - knowledge, skills and competences fully
	meet the requirements of the study course, student is able to
	apply the acquired knowledge independently;
High (8 –very good	8 (very good) – the requirements of the study course are fully
7 - good)	met, however, there is insufficient understanding of
	individual issues to use the knowledge independently for the
	solution of more complex problems;
	7 (good) – the requirements of the study course are met in
	general, however, sometimes the inability to use the
	acquired knowledge independently is detected;
Average (6 – almost	6 (almost good) –. the requirements of the study course are
good	met in general, however insufficient understanding of
5 – satisfactory	some problems and inability to apply the acquired
4 –almost	knowledge is detected;
satisfactory)	5 (satisfactory) – the requirements of the study course are
	met for the most part, however insufficient understanding
	of many problems and inability to apply the acquired
	knowledge is detected;
	4 (almost satisfactory) – the requirements of the study
	course are met, for the most part, however insufficient
	understanding of some main concepts is detected as well
	the acquired knowledge are stated:
Low	3 (bad) knowledge is superficial and incomplete: the
(3 - 1 - negative)	student is unable to use it in specific situations:
evaluation)	2 (very had) – superficial and incomplete knowledge of
e valaation)	only some problems, the most part of the study course is not
	mastered;
	1 (very very bad) – an absence of understanding of the main
	problems of the subject matter, almost no knowledge of the
	content of the study course.

Study programme	Computer Systems
ECTS	3
Preliminary	Computer Security Principles and Technologies, Web technology
knowledge,	fundamentals
Related study	
courses	
Aim	To help understanding security testing standards, methodologies and tools To provide an insight into web application protocols To teach the approaches to penetration testing To make sure that skills in security testing of web applications are acquired
Planned learning	
outcomes	
Knowledge	
	 Fundamental concepts of web application technologies. Fundamental concepts of web application architectures. Understanding of web application related threats and protection controls.
Skills	
	 Ability to understand type of architecture and technologies used Ability to perform reconnaissance and collect information about test environment Ability to select the required tests based on standards and best practices
Competencies	
	 The ability to apply the theoretical and practical knowledge and skills for the basic web application security assessment The ability to work individually and in a team, applying their knowledge, being able to take responsibility for the results of their performance The ability to set up security requirements in relation to Web Functionality, web protocols, type of encoding, authentication & authorization.
Literature and other sources	
Of information:	
Compulsory reading	 PCI SSC penetration testing guidance, https://listings.pcisecuritystandards.org/documents/Penetration- Testing-Guidance-v1_1.pdf PTES methodology, http://www.pentest- standard.org/index.php/PTES_Technical_Guidelines Web Application Security: Exploitation and Countermeasures for Modern Web Applications 1st Edition by Andrew Hoffman, 2020 OWASP testing guida v4 (Web Application Penetration Testing)
	https://www.owasp.org/images/1/19/OTGv4.pdf

ISMA study course Web Application Security Fundamentals

Recommended	1. Dafydd Stuttard, Marcus Pinto. The Web Application Hacker's
	Handbook – Finding and Exploiting Security Flaws, Second edition.
	John Wiley & Sons, Inc. 2011. – 914p.Network+: Guide to Networks

Week	Торіс	Academic hours	
		full- time	Part-Time intramural
1.	Introduction to WEB Technologies.	4	2
2.	Web Architecture	4	2
3.	Web Functionality	4	4
4.	HTTP protocol	4	4
5.	Encoding Schemes	4	2
6.	Authentication, Cookies and Sessions	4	2
	Total	24 ac.h	16 ac.h

Self-study work	Ac.hours for full-time/	Planned learning outcomes
	Part-Time intramural/	
	Part-Time extramural	
1. Introduction. Compulsory	8/8/12	Knowledge, Skills and
reading, sources and		Competencies: Students
methodological materials		studied the problems of Web
learning		technology fundamentals,
		web architecture and
		reference designs, basic
		security requirements.
2. Evolution of Web	12/16/16	Knowledge, Skills and
Application Security.		Competencies:
Alternative way of		Students understand how to
viewing page source code.		view page source code, how
Find sensitive Hyperlinks.		to identify Content
Find JavaScript in source		Management System that is
code.		used
Client-side technologies.		
3. Server-side technologies.	12/16/16	Knowledge, Skills and
HTTP Protocol.		Competencies: Students
Observe network		understand how to Find
connections.		sensitive Hyperlinks, how to
Show Client-Server Flow		find JavaScript in source
History.		code, to distinguish between
Verify HTTP Request		Client-side technologies and
Methods.		Server-side technologies
4. Examine URL	8/8/12	Knowledge, Skills and
HTTP Response Status		Competencies: Students
Codes		understand how to review

HTTP Headers		HTTP Protocol activities,
Security HTTP Headers		how to observe network
		connections, how to view
		Client-Server Flow History,
		how to verify HTTP Request
		Methods
5. Subdomains and HTTPS.	8/8/12	Knowledge, Skills and
TLS Certificates.		Competencies: Students
TLS Certificate formats.		understand how to examine
TLS Multi domain		URL addresses, what HTTP
Certificates.		Response Status Codes mean,
Cipher Suites.		how to study HTTP Headers
		 Requests and Responses,
		investigate Security HTTP
		Headers, how DNS system
		operates, how to observe TLS
		Certificates contents, how to
		select secure protocols in
		Cipher Suites, how HTTPS
		protocol.
6. Encoding.	8/8/12	Knowledge, Skills and
HTTP Cookies.		Competencies: Students
Sessions.		understand how to perform
Authentication.		simple types of encoding,
		how to decode the encoded
		message, how to identify
		session parameter
		manipulation, how to ensure
		proper authentication type
		selection.
Total:	56/64/80	

Study work	Knowledge	Skills	Competences	% of final evaluation	
1. Home works	+	+	+	50	
2. Exam	+	+	+	50	

Level	Requirements
Very high (10 –with distinction	10 (with distinction) - knowledge, skills and
9 – excellent)	competences exceed the requirements of the
	study course and demonstrate the ability to
	perform independent research as well as the
	deep understanding of problems;
	9 (excellent) - knowledge, skills and
	competences fully meet the requirements of
	the study course, student is able to apply the
	acquired knowledge independently;

High (8 –very good	8 (very good) – the requirements of the study
7 - good)	course are fully met, however, there is
	insufficient understanding of individual issues
	to use the knowledge independently for the
	solution of more complex problems;
	7 (good) – the requirements of the study
	course are met in general, however,
	sometimes the inability to use the acquired
	knowledge independently is detected;
Average (6 – almost good	6 (almost good) the requirements of the
5 – satisfactory	study course are met in general, however
4 –almost satisfactory)	insufficient understanding of some problems
	and inability to apply the acquired
	knowledge is detected;
	5 (satisfactory) – the requirements of the
	study course are met for the most part,
	however insufficient understanding of
	many problems and inability to apply the
	acquired knowledge is detected;
	4 (almost satisfactory) – the requirements
	of the study course are met, for the most
	part, however insufficient understanding of
	some main concepts is detected as well as
	considerable difficulties in the practical
	application of the acquired knowledge are
	stated;
Low	3 (bad) – knowledge is superficial and
(3-1 - negative evaluation)	incomplete; the student is unable to use it in
	specific situations;
	2 (very bad) – superficial and incomplete
	knowledge of only some problems, the most
	part of the study course is not mastered;
	1 (very very bad) – an absence of
	understanding of the main problems of the
	subject matter, almost no knowledge of the
	content of the study course.

Study	Computer Systems
programme	Computer bystems
ECTS	6
Preliminary	Mathematics, Mathematical methods,
knowledge.	
Related study	
courses	
Aim	The purpose of the course is
	- to study the conceptual apparatus of the discipline, the main theoretical
	provisions and methods, the formation of skills and instilling skills in
	applying theoretical knowledge to solve applied problems;
	- to acquaint students with the basics of knowledge management and the
	features of processing various types of data;
	- to provide understanding and skills in the use of appropriate analytical
	methods and tools to effectively create, extract, maintain, recover and
	disseminate data and knowledge that is useful for business.
Planned learning	
outcomes	
Knowledge	
	1. Methods of analysis, pre-processing and statistical description of data
	2. Direct and iterative methods for solving systems of linear equations.
	3. Basic methods for solving nonlinear equations and their systems
	4. Numerical methods for solving ordinary differential equations;
Skills	
	1. Apply methods of analysis, pre-processing and statistical description of data
	2. Apply direct and iterative methods for solving systems of nonlinear equations in solving applied problems
	3. Apply methods for solving nonlinear equations in solving applied
	problems.
	4. Apply numerical methods for solving ordinary differential equations in
	solving applied tasks.
Competencies	
	1. Programming skills of numerical methods in mathematical software
	packages.
	2. Analyse socio-economic tasks and processes using the methods of
	system analysis and mathematical modelling
	3. Justify the choice of design solutions for the types of information systems
	support A Apply a systematic approach and mathematical methods in formalizing
	4. Apply a systematic approach and mathematical methods in formalizing the solution of applied problems
Literature	
and other sources	
of information:	
Compulsory	1. Data science and AI in FinTech: an overview, Cao, Longbinga, Yang, Olangh, Vy, Philip S. 2021. International Journal of Data Science J
reading	Analytics, Volume 12, Issue 2, Pages 81 – 99.

ISMA study course Mathematics for System Analysts

		2.	Applied data analytics - principles and applications, Agbinya, Johnson
			I., River Publishers, 2020, 978-877022096-5, 978-877022095-8, pages
			336
		3.	Using applied mathematical models for business transformation, Trad,
			Antoine, Kalpić, Damir, 2019, IGI Global 78-179981011-7, 978-
			179981009-4,
		4.	An introduction to numerical methods and analysis, Epperson, James
			F., 2021, Wiley publisher, ISBN 978-111960475-4, 978-111960469-3,
			pages 650.
		5.	Data Mining, 4th Ed., Ian H. Witten, Eibe Frank, Mark A. Hall,
			Christopher Pal, 2016 (3rd Ed.2011).
•	Recommend	1.	Python Programming: and Introduction to Computer Science, John M.
	ed		Zelle, Preliminary Second Edition Fall, 2009.
		2.	Advanced Guide to Python 3 Programming, John Hunt, 2019, Springer
			Nature Switzerland, ISSN 1863-7310
		3.	Learning the Impact of Data Pre-processing in Data Analysis, 2018,
			Besim Bilalli, Universitat Politècnica De Catalunya, Department of
			Service and Information System Engineering, Barcelona, 2018
		4.	Data Mining and Machine Learning: Fundamental Concepts and
			Algorithms, 2nd Ed., Mohammed J. Zaki and Wagner Meira, Jr, 2020
			(online book: https:// dataminingbook.info/book_html/).
		5.	An Introduction to Statistical Methods and Data Analysis, 2001, Fifth
			Edition, R. Lyman Ott, Thomson Learning Academic Resource Center,
			DUXBURY, ISBN 0-534-25122-6

Week	k Topic		Academic hours	
		FT	РТ	
1	Introduction	2	2	
	Variables and Basic Data Structures. Functions.			
	Data structure. String. List. Tuple. Set. Arrays. Function			
	basics. Local variables and global variables. Nested			
	functions. Lambda functions. Functions as arguments to			
	functions. Recursive functions. Branching statements.			
	Iteration. Data objects and attribute types. Data			
	transformation and data discretization. Normalization.			
	Binning. Histogram analysis. Discretization by cluster,			
	decision tree, and correlation analyses. Metadata			
2	Statistical description of data	4	2	
	Organizing and Producing Data. Displaying Data.			
	Describing Distributions with Numbers. Correlation			
	and Regression. Producing Data.			
3	Probability.	4	2	
	The basics of probability. Conditional probability and			
	independence. Random variables and distribution			
	functions. The expected value. Examples of mass			
	functions and densities. The law of large numbers. The			
	central limit theorem.			

	Estimation		
	Overview of estimation Method of moments Unbiased		
	estimation Maximum likelihood estimation Interval		
	estimation. Maximum fikelihood estimation. Interval		
	Usuathoris tosting		
	nypomesis testing.		
	Simple hypotheses. Composite hypotheses. Extensions		
	on the likelihood ratio. T procedures. Goodness of fit.		
	Analysis of variance.		
4	Data pre-processing.	2	2
	Data quality. Data cleaning. Missing value. Noisy data.		
	Data cleaning as a process. Data integration.		
	Redundancy and correlation analysis. Tuple		
	duplication. Data value conflict detection and		
	resolution. Data reduction. Wavelet transforms.		
	Principal components analysis. Attribute subset		
	selection. Regression and log-linear models.		
	Histograms Clustering Sampling Data cube		
	agoregation		
	Data classification Cluster analysis Outlier detection		
5	Linear Algebra and Systems of Linear Equations	1	2
5	Elitear Algebra algebra Sata Voctor Matrices Linear	4	2
	basics of linear algebra. Sets. Vector. Matrices. Linear		
	transformations. Systems of finear equations. Solutions		
	to systems of linear equations. Gauss elimination		
	method. Gauss-Jordan elimination method. LU		
	decomposition method. Iterative methods – Gauss-		
	Seidel method.		
	Eigenvalues and Eigenvectors. Problem Statement		
	Eigenvalues and eigenvectors. The motivation behind		
	eigenvalues and eigenvectors. The characteristic		
	equation. The power method. The QR method.		
6	Regression	4	2
	Least squares regression problem statement. Least		
	squares regression derivation. Linear algebra. Least		
	squares regression derivation. Multivariate calculus.		
	Least squares regression for nonlinear functions.		
	Polynomial regression		
	Interpolation		
	Interpolation problem statement Linear interpolation		
	Lagrange polynomial interpolation Newton's		
	polynomial interpolation		
	Taylor Sorios		
	Expressing functions using a Taylor series		
	Appressing functions using a Taylor series.		
	Approximations using Taylor series. Discussion about		
	errors. Truncation errors for Taylor series. Estimating		
	truncation errors. Round-off errors for Taylor series.		
7	Numerical differentiation. Numerical integration.	4	2
	Root finding. Ordinary differential equations initial		
	value problems. Boundary-value problems for ordinary		
	differential equations. Numerical error and Instability.		
	Fourier transform.		

8	Data visualization and plotting	2	2
9	Computer Experiments in the Python environment.	4	2
	Data structure. Tuple. Dictionary. Operators. Arrays.		
	2D Arrays.		
10	Computer Experiments in the Python environment.	2	2
	Statistical description of data		
11	Computer Experiments in the Python environment.	2	2
	Probability Functions and Empirical Distributions		
12	Computer Experiments in the Python environment.	4	2
	Data classification. Cluster analysis. Outlier detection.		
13	Computer Experiments in the Python environment.	2	2
	The Transpose of Vectors and Matrices, the Identity		
	Matrix. Eigenvalues and Eigenvectors.		
14	Computer Experiments in the Python environment.	2	2
	Taylor series. Interpolation.		
15	Computer Experiments in the Python environment.	2	2
	Ordinary Differential Equations.		
16	Computer Experiments in the Python environment.	4	2
	Data visualization.		
	Total	48 ac.	32 ac.
		h	h

Description of students' self-studies organisation and assignments

Self-study work	Ac. hours for full-	Planned learning outcomes
	Part-Time intramural/	
	Part-Time extramural	
Data pre-processing algorithms.	28/32/40	Knowledge, Skills and
Data classification. Cluster		Competencies in the
analysis. Outlier detection.		Python environment
Eigenvalues and Eigenvectors.	28/32/40	Knowledge, Skills and
		Competencies in the
		Python environment
Expressing functions using a	28/32/40	Knowledge, Skills and
Taylor series. Round-off errors for		Competencies in the
Taylor series.		Python environment
Data visualization algorithms	28/32/40	Knowledge, Skills and
		Competencies in the
		Python environment
Total:	112/128/160	

St	udy work	Knowledge	Skills	Competences	% of final evaluation
1.	Home works (Self-study work)	+	+	+	50
2.	Exam	+	+	+	50

Level	Requirements
Very high	10 (with distinction) - knowledge, skills and competences exceed the
(10 –with	requirements of the study course and demonstrate the ability to perform
distinction	independent research as well as the deep understanding of problems;
9 – excellent)	9 (excellent) - knowledge, skills and competences fully meet the
	requirements of the study course, student is able to apply the acquired
	knowledge independently;
High (8 –	8 (very good) – the requirements of the study course are fully met, however,
very good	there is insufficient understanding of individual issues to use the knowledge
7 - good)	independently for the solution of more complex problems;
	7 (good) – the requirements of the study course are met in general, however,
	sometimes the inability to use the acquired knowledge independently is
	detected;
Average (6 –	6 (almost good) –. the requirements of the study course are met in general,
almost good	however insufficient understanding of some problems and inability to
5 –	apply the acquired knowledge is detected;
satisfactory	5 (satisfactory) – the requirements of the study course are met for the most
4 –almost	part, however insufficient understanding of many problems and inability
satisfactory)	to apply the acquired knowledge is detected;
	4 (almost satisfactory) – the requirements of the study course are met, for
	the most part, however insufficient understanding of some main concepts
	is detected as well as considerable difficulties in the practical application
	of the acquired knowledge are stated;
Low	3 (bad) – knowledge is superficial and incomplete; the student is unable to
(3 – 1 –	use it in specific situations;
negative	2 (very bad) – superficial and incomplete knowledge of only some problems,
evaluation)	the most part of the study course is not mastered;
	1 (very very bad) – an absence of understanding of the main problems of the
	subject matter, almost no knowledge of the content of the study course.

Study programme	Computer Systems
ECTS	6
Preliminary	Mathematics for System Analytics, Programming for Data Science
knowledge,	and System Analytics, Computer Experiments and Modelling
Related study	Technologies
courses	
Aim	Develop knowledge in order to determines measures of efficiency for development of skills in design of management systems. Summarize the knowledge to demonstrate effective decision making logic at any level of the organization and obtain insight into a system that provides hazard identification, analyse complex
	situations and develop activities for effective management actions,
	which are necessary for grow and producing.
Planned learning	
outcomes	
Knowledge	
	 Understand the similarities and differences in management system design methodology. Familiarity with high-level solutions and capabilities in the modern technologies to design management systems.
Skills	
	 Be able to conduct a comprehensive functional-structural assessment of system's organisation To use the main approaches and recommend suitable solutions, connecting the possibilities and needs of the problem area with available solutions. To be able to analyse processes in the environment and make decisions according to the changes in the situation
Competencies	
	 Understand the role of strategic and development plans for efficient management of the company. To be able to summarise and critically assess the results of designing and implementing management systems, in turn being able to identify and formulate actual problems.
Literature and other	
sources of	
information:	
Compulsory reading	 Collins C., Dennehy D., Conboy K., Mikalef P. (2021) Artificial intelligence in information systems research: A systematic literature review and research agenda. https://doi.org/10.1016/j.ijinfomgt.2021.102383 International Journal of Information Management Volume 60, October 2021, 102383 Kossiakoff A., Swee N, Seymor S., Bier S. Systems Engineering Principles and Practice. John Willey & Sons, 2011. Senge P., The Fifth Discipline: The Art and Practice of Learning
	Organization. Paperback, 2006.

ISMA study course System Approach to Computer System Design

•	Recommended	0	Aulet B. Disciplined Entrepreneurship Workbook, 2017.	
		0	Business Analytics: Data Analysis and Decision Making, 7th	
			Ed., S. Christian Albright, Wayne L. Winston, 2020.	
		0	Fred R. David. Strategic Management Concepts and Cases A	
			Competitive Advantage Approach: 15th Edition, by Fred R.	
			David and Forest R. David, published by Pearson Education,	
			2015	
		0	Trompenaars F., Coebergh P.H. 100+ Management Models.	
			How to understand and apply the world's most powerful	
			business tool. – Oxford: Infinite Ideas Limited, 2014.	

Week	Topic	Academic hours		
		full- time	Part-Time intramural	
1	Introduction to efficient management methodology.	6	4	
2	Applying the Vision Model to System Design	6	4	
3	Business data collection	6	4	
4	Assessment of management system efficiency.	6	4	
5	System design procedure.	6	4	
6	Dynamic methods for assessment of system efficiency.	6	4	
7	System stability upon uncertainties.	6	4	
8	Creating systemic thinking during design of systems.	6	4	
	Total	48 ac.h	32 ac.h	

Self-study work	Ac.hours for full-time/ Part-Time intramural/ Part-Time extramural	Planned learning outcomes
System Design Algorithm	56/64/80	Knowledge, Skills and Competencies: give an understanding General Rules for Designing High Quality Systems.
System Design products	56/64/80	Knowledge, Skills and Competencies: create a system tool.
Total:	112/128/160	

Study work	Knowledge	Skills	Competences	% of final evaluation
				initial contraction

1.	Home works (Self-study	+	+	+	50
	work)				
2.	Exam	+	+	+	50

Level	Requirements
Very high	10 (with distinction) - knowledge, skills and competences exceed the
(10 – with	requirements of the study course and demonstrate the ability to
distinction	perform independent research as well as the deep understanding of
9 – excellent)	problems;
	9 (excellent) - knowledge, skills and competences fully meet the
	requirements of the study course, student is able to apply the
	acquired knowledge independently;
High (8 –	8 (very good) – the requirements of the study course are fully met,
very good	however, there is insufficient understanding of individual issues to
7 - good)	use the knowledge independently for the solution of more complex
	problems;
	7 (good) – the requirements of the study course are met in general,
	however, sometimes the inability to use the acquired knowledge
	independently is detected;
Average (6 –	6 (almost good) –. the requirements of the study course are met in
almost good	general, however insufficient understanding of some problems and
5-	inability to apply the acquired knowledge is detected;
satisfactory	5 (satisfactory) – the requirements of the study course are met for
4 –almost	the most part, nowever insufficient understanding of many
satisfactory)	problems and inability to apply the acquired knowledge is detected;
	4 (almost satisfactory) – the requirements of the study course are
	met, for the most part, nowever insufficient understanding of some
	main concepts is detected as well as considerable difficulties in the
Low	2 (bad) knowledge is superficial and incomplete: the student is
10w	unable to use it in specific situations:
(3-1-	2 (very had) superficial and incomplete knowledge of only some
evaluation)	problems, the most part of the study course is not mastered:
evaluation)	1 (very very bad) = an absence of understanding of the main
	1 (very very bad) – an absence of understanding of the main
1	problems of the subject matter almost no knowledge of the content

ISMA study course Programming for Data Science	ISMA	study	course	Progr	amming	for	Data	Science
--	------	-------	--------	-------	--------	-----	------	---------

Study programme	Computer Systems
ECTS	6
Preliminary	Python programming
knowledge,	Mathematics (differential and integral calculus)
Related study	
courses	
Aim	This course will cover the main principles of computer programming
	with a focus on data science applications by following the entire
	pathway from raw data to databases, data wrangling and visualisation,
	machine learning frameworks up to software development.
Planned learning	At the end of the course and having completed the essential reading
outcomes	and activities students should be able to:
	- convert raw data to relational databases such as SQL
	- import data to Python and R, apply data manipulation and
	visualisation
	- program in Python and R
	- develop software using version control via Git
Knowledge	
	1. Understand the main principles of programming in the data science
	context and develop the ability to handle and visualise data.
	2. Programming in the Python programming language
Skille	
SKIIIS	1 Be able to computational thinking in various applications domains
	and learn to communicate data analysis results to stakeholders
	2 Account for and discuss the application of i) technologies to
	convert data to an appropriate format for data analysis ii)
	algorithms to analyse data through supervised and unsupervised
	machine learning as well as iii) technologies and performance
	metrics for evaluation of data analysis results.
Competencies	
	1. Understand the benefits and challenges of data
	2. To be able to integrate the steps in a data science process to real
	life data.
Literature	
and other sources	
of information:	
Compulsory	1. Python Data Science Handbook: Essential Tools for Working with
reading	Data Paperback. 2023. English edition by Jake Vanderplas
	2. Hands-On Data Structures and Algorithms with Python: Write
	complex and powerful code using the latest features of Python 3.7,
	2nd Edition, Dr. Basant Agarwal, Benjamin Baka, October 31,
	2018, ISBN 978-1788995573
	3. Guttag, John V., Introduction to Computation and Programming
	Using Python: with Application to Understanding Data, MIT
	Press, 2016.

		4.	VanderPlas, Jake, Python Data Science Handbook: Essential Tools	
			for Working with Data, O'Reilly Media, 2016.	
		5.	Pieter Spronck. The Coder's Apprentice: Learning Programming	
			with Python 3, (2017). http://www.spronck.net/pythonbook/	
•	Recommended		1. Grus, Joel, Data Science from Scratch: First Principles with Python,	
			O'Reilly Media, 2015.	
			2. Hill, Christian, Learning Scientific Programming with Python,	
			Cambridge University Press, 2016.	
			3. Python website: https://www.python.org/	
			4. Free textbook: A Byte of	
			Python https://python.swaroopch.com/	

Week	Topic	Academic hours	
		full-	Part-Time
1		time	intramural
1	Raw data, relational	6	4
	databases models, structured		
	query languages (SQL), data		
	extraction, processing of		
	various numan-readable data		
	CSV) importing to Dath on		
	csv), importing to Python		
	and K, data types and data		
2	Belevent meansming	6	4
2	concente such as IDEs	0	4
	concepts, such as IDEs,		
	veriables functions loops		
	errors and execution		
	bandling and data input		
	output operations		
3	data science problem going	6	4
5	through manipulation and	0	+
	visualisation of data and		
	finally creating actionable		
	insights		
4	Data cleaning and	6	4
•	transformation	0	-
	representation of data using		
	tabular data structures and		
	their manipulation		
	Programming and handling		
	data types in R and Python		
	such as scalars, factors,		
	vectors, matrices, arrays, lists		
	and data frames. Introduction		
	to NumPy and Pandas in		
	Python, and the data		
	wrangling utilities in base R		

	and the tidyverse collection		
	of R packages.		
5	Methods for explanatory data	6	4
	analysis, using various		
	statistical plots such as		
	histograms and boxplots,		
	data visualisation plots for		
	time series data, multivariate		
	data, dimensionality		
	reduction methods for		
	visualisation of high-		
	dimensional data, graph data		
	visualisation methods.		
6	Hands on experience with	6	4
	Python (matplotlib and		
	seaborn) and R (base R		
	graphics, ggplot2).		
7	Introduction to Machine	6	4
	Learning via standard		
	frameworks in Python		
	(SciPy, Scikit Learn) and R		
	(glm methods, mlr, caret).		
8	Use of version control via git	6	4
	to share work and collaborate		
	with others in the Data		
	Science industry. Software		
	testing methods and test-		
	driven development (using		
	unit testing). Developing an		
	R package.		
	Total	48 ac.h	32 ac.h

Self-study work	Ac.hours for full-time/	Planned learning outcomes
	Part-Time intramural/	
	Part-Time extramural	
Describe the whole data	56/64/80	Knowledge, Skills and
science process		Competencies: The student
		can only describe 0-3
		procedures in the whole
		process correctly
Accurately use procedural	56/64/80	Knowledge, Skills and
statements		Competencies: Less than 50%
		of procedural statements are
		used correctly
Total:	112/128/160	

Study work	Knowledge	Skills	Competences	% of
				final evaluation

1.	Home works	+	+	+	50
	(Self-study				
	work)				
2.	Exam	+	+	+	50

Level	Requirements		
Very high (10 –with	10 (with distinction) - knowledge, skills and		
distinction	competences exceed the requirements of the study		
9 – excellent)	course and demonstrate the ability to perform		
	independent research as well as the deep		
	understanding of problems;		
	9 (excellent) - knowledge, skills and competences		
	student is able to apply the acquired knowledge		
	independently:		
High (8 yerry good	R (very good) the requirements of the study course		
Tigli (8 –very good	o (very good) – the requirements of the study course are fully mot however there is insufficient		
7 - good)	are fully met, nowever, there is insufficient		
	knowledge independently for the solution of more		
	complex problems:		
	7 (good) - the requirements of the study course are		
	met in general however sometimes the inability to		
	use the acquired knowledge independently is		
	detected.		
Average (6 – almost good	6 (almost good) - the requirements of the study		
5 - satisfactory	course are met in general however insufficient		
4 –almost satisfactory)	understanding of some problems and inability to		
	apply the acquired knowledge is detected;		
	5 (satisfactory) – the requirements of the study		
	course are met for the most part, however		
	insufficient understanding of many problems and		
	inability to apply the acquired knowledge is		
	detected;		
	4 (almost satisfactory) – the requirements of the		
	study course are met, for the most part, however		
	insufficient understanding of some main concepts is		
	detected as well as considerable difficulties in the		
	practical application of the acquired knowledge are		
_	stated;		
Low	3 (bad) – knowledge is superficial and incomplete;		
(3-1 - negative evaluation)	the student is unable to use it in specific situations;		
	2 (very bad) – superficial and incomplete		
	knowledge of only some problems, the most part of		
	ine study course is not mastered;		
	1 (very very bau) - an absence of understanding of the main problems of the subject matter almost re-		
	the main problems of the subject matter, almost no		
	knowledge of the content of the study course.		

Study program	Computer Systems			
ECTS	3			
Preliminary knowledge,	Relational DBMS Foundations			
Related study courses				
Aim	To provide students with a solid understanding of database management principles and practical skills in using Structured Query Language (SQL) to design, implement, and manage relational databases.			
Planned learning outcomes				
Knowledge	 Understanding of the fundamental principles of relational database systems, including data normalization, indexing, and transaction management. Understanding of the best practices for data management, including data backup and recovery and data security. 			
Skills	 The ability to design and develop efficient database schemas, define relationships between tables, and create data models that meet specific business requirements. The ability to write complex SQL queries to retrieve, filter, and manipulate data stored in a relational database system. 			
Competencies	 Show the ability to apply their knowledge of databases and SQL to solve real-world problems related to data management, analysis, and application development. Show the ability to communicate technical information effectively to both technical and non-technical stakeholders, including managers, clients, and colleagues. 			
Literature and other sources of information:				
Compulsory reading	 Database Design for Mere Mortals: 25th Anniversary Edition (4th Ed), Michael J. Hernandez, Addison- Wesley Professional, 2020. Database systems: the complete book, Pearson.; Garcia-Molina, Hector; Ullman, Jeffrey D.; Widom, Jennifer, Pearson Education Limited, 2013/2014 			
• Recommended	 Cracking the SQL Interview for Data Scientists: Nervous about your SQL Interview? Anxiety ends here. Learn, refresh and master SQL Skills in a Week, Leon Wei, 2021. 			

ISMA study course Databases and SQL

Study course content and schedule of contact hours

Week Topic Academic ho	ours
------------------------	------

		full-	part-time
		time	intramural
1	Introduction and orientation.	2	1
	Introduction to databases and SQL.		
2	Relational database design principles.	2	2
3	SQL data types and operators.	2	2
	Querying data with SELECT.		
4	Filtering and sorting data.	2	2
	Joining multiple tables.		
5	Aggregating and grouping data.	2	2
	Subqueries and derived tables.		
5	Modifying data with INSERT, UPDATE, and DELETE	2	1
	statements.		
7	Creating and managing databases, and tables.	2	1
8	Indexing and performance optimization.	2	1
	Transactions and concurrency control.		
9	Stored procedures and functions.	2	1
10	Triggers and event-driven programming.	2	1
11	Securing databases and data privacy.	2	1
12	Backup and recovery strategies.	2	1
	Wrapup.		
	Total:	24	16 ac.h
		ac.h	

Self-study work	Ac.hours for	Planned learning outcomes
	full-time/	
	part-time intramural/	
	distance	
	studies extramural	
1. Compulsory reading,	12/16/20	Knowledge, Skills and
sources, and methodological		Competencies: Students
materials learning		studied the core concepts
C		behind relational databases,
		design and administration, as
		well as SQL syntax.
2. Familiarization with	12/16/20	Knowledge, Skills and
Terminal and VSCode IDE		Competencies: Students
with SQL plugin for DB		understand and are able to
administration.		setup tools necessary for
		development and
		administration of the
		relational SQL DB system.
3. Familiarization with design	12/16/20	Knowledge, Skills and
and development of the		Competencies: Students
relational databases.		understand and can apply DB
		systems design principles for
		logical and physical model

		implementation as well as
		data retrieval.
4. Practical Exercises	12/16/20	Knowledge, Skills and
		Competencies: Students will
		be able to design, implement
		and manage DB systems
		according to a specification.
Total:	48/64/80	

Study work	Knowledge	Skills	Competences	% of final evaluation
1. Homeworks	+	+	+	50
2. Exam	+	+	+	50

Level	Requirements	
Very high (10 –with distinction 9 – excellent)	 10 (with distinction) - knowledge, skills and competences exceed the requirements of the study course and demonstrate the ability to perform independent research as well as the deep understanding of problems; 9 (excellent) - knowledge, skills and competences fully meet the requirements of the study course, student is able to apply the acquired knowledge independently; 	
High (8 –very good 7 - good)	8 (very good) – the requirements of the study course are fully met, however, there is insufficient understanding of individual issues to use the knowledge independently for the solution of more complex problems; 7 (good) – the requirements of the study course are met in general, however, sometimes the inability to use the acquired knowledge independently is detected;	
Average (6 – almost good 5 – satisfactory 4 –almost satisfactory)	 6 (almost good) –. the requirements of the study course are met in general, however insufficient understanding of some problems and inability to apply the acquired knowledge is detected; 5 (satisfactory) – the requirements of the study course are met for the most part, however insufficient understanding of many problems and inability to apply the acquired knowledge is detected; 4 (almost satisfactory) – the requirements of the most part, however insufficient understanding of many problems and inability to apply the acquired knowledge is detected; 4 (almost satisfactory) – the requirements of the study course are met, for the most part, however insufficient understanding of some main concepts is detected as well as 	

	considerable difficulties in the practical application of the acquired knowledge are stated;
Low (3 – 1 – negative evaluation)	 3 (bad) – knowledge is superficial and incomplete; the student is unable to use it in specific situations; 2 (very bad) – superficial and incomplete knowledge of only some problems, the most part of the study course is not mastered; 1 (very very bad) – an absence of understanding of the main problems of the subject matter, almost no knowledge of the content of the study course.

Study program	Computer Systems
ECTS	3
Preliminary knowledge, Related study courses	Introduction to programming using Python
Aim	To provide students with the knowledge and skills needed to perform exploratory data analysis, data cleansing, and modeling using a variety of machine learning techniques. By the end of the course, students will have gained practical experience in Python programming, using libraries such as Pandas and Numpy, and will have a solid understanding of regression, classification, clustering, and neural network algorithms.
Planned learning outcomes	
Knowledge	 Understanding of data science concepts, including exploratory data analysis, data cleansing and imputation, and model selection techniques. Familiarity with a variety of machine learning algorithms, including regression, classification, clustering, and neural networks.
Skills	 Proficiency in using Python programming language and related libraries, such as Pandas and Numpy, for data analysis and modeling. Ability to implement data preparation and machine learning techniques, such as regression and clustering, to solve real-world problems.
Competencies	 Ability to analyze and interpret complex data sets using a variety of statistical and machine learning techniques. Proficiency in designing and implementing machine learning models to solve business problems and extract insights from data.
Literature and other sources of information:	
Compulsory reading	 "Data Science from Scratch: First Principles with Python" by Joel Grus (2019) Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter by Wes McKinney Sep 20, 2022 Everything Data Analytics A Beginner's Guide to Data Literacy: Understanding the Processes That Turn Data Into Elizabeth Clarke, 2022 The Hundred-Page Machine Learning Book by Andriy Burkov (2019) "Hands-On Machine Learning with Scikit-Learn and TensorFlow" by Aurélien Géron (2017)

ISMA study course Data Analysis

	6. "The Elements of Statistical Learning: Data Mining,
	Inference, and Prediction" by Trevor Hastie, Robert
	Tibshirani, and Jerome Friedman (2017)
Recommended	1. "The Practice of Cloud System Administration:
	Designing and Operating Large Distributed Systems"
	by Thomas A. Limoncelli, Strata R. Chalup, and
	Christina J. Hogan, 2020.
	2. "Data Mining: Concepts and Techniques" by Jiawei
	Han and Micheline Kamber (2018)
	3. "Practical Statistics for Data Scientists: 50 Essential
	Concepts" by Peter Bruce and Andrew Bruce (2018)
	4. "Python Machine Learning" by Sebastian Raschka and
	Vahid Mirjalili (2017)

Week	Topic		Academic hours	
		full- time	part-time intramural	
1	Course Orientation and Introduction to Data Analysis	2	1	
2	Python, Libraries, and Jupyter Notebooks/Lab.	2	1	
3	Pandas DataFrames, Numpy. Exploratory Data Analysis.	2	1	
4	Data Cleansing/Imputation, Data preparation & model selection techniques.		1	
5	Linear Regression, Logistic Regression, Linear Regression Regularization and KNN.		2	
5	Decision Trees.	2	2	
7	Support Vector Machines (SVM).	2	1	
8	Introduction to Artificial Neural Networks.	2	2	
9	Fully Connected Feed-forward Artificial Neural Networks.	2	1	
10	Clustering Analysis.	2	1	
11	Kohonen Neural Networks.	2	1	
12	Bayesian Learning.	2	2	
	Total:	24	16 ac.h	
		ac.n		

Self-study work	Ac.hours for full-time/ part-time intramural/ distance	Planned learning outcomes
	studies extramural	
1. Compulsory reading,	12/16/20	Knowledge, Skills and Competencies:
sources, and		Students will get a solid understanding
methodological materials		of the core concepts and techniques in
learning.		data analysis, machine learning, and

		statistical modeling. Students will also
		learn how to use relevant tools and
		software, such as Python, Jupyter
		Notebooks/Lab. and related libraries
		and packages, to implement and apply
		these concepts.
2. Familiarization with	12/16/20	Knowledge, Skills and Competencies:
exploratory data analysis	12,10,20	Students will gain familiarity with
and related libraries		exploratory data analysis and related
and related noraries.		libraries, such as Pandas and Numpy, to
		affectively process and englyze large
		enecuvery process and analyze large
		and complex datasets. Students will
		learn now to apply statistical techniques
		and visualizations to identify patterns,
		trends, and relationships in data.
3. Familiarization with	12/16/20	Knowledge, Skills, and Competencies:
classification, regression,		Students will become familiar with a
and clustering analysis.		range of classification, regression, and
		clustering analysis techniques,
		including linear regression, logistic
		regression, decision trees, support
		vector machines (SVM), and neural
		networks. Students will learn how to
		use these techniques to build predictive
		models and gain insights from data.
4. Practical Exercises.	12/16/20	Knowledge, Skills and Competencies:
		Students will be able to apply the
		concepts and techniques they have
		learned to real-world problems.
		Students will work on data preparation.
		modeling, and analysis tasks, gaining
		hands-on experience with tools and
		methods used in data analysis and
		machine learning
Total:	48/64/80	0

Study work	Knowledge	Skills	Competences	% of final evaluation
1. Homeworks	+	+	+	50
2. Exam	+	+	+	50

Level	Requirements
Very high (10 –with distinction 9 – excellent)	10 (with distinction) - knowledge, skills and competences exceed the requirements of the study course and demonstrate the ability to perform independent research as well as the deep understanding of problems;

	9 (excellent) - knowledge, skills and
	competences fully meet the requirements of
	the study course, student is able to apply the
	acquired knowledge independently;
High (8 –very good	8 (very good) – the requirements of the study
7 - good)	course are fully met, however, there is
	insufficient understanding of individual issues
	to use the knowledge independently for the
	solution of more complex problems;
	7 (good) – the requirements of the study
	course are met in general, however,
	sometimes the inability to use the acquired
	knowledge independently is detected;
Average (6 – almost good	6 (almost good) –. the requirements of the
5 – satisfactory	study course are met in general, however
4 –almost satisfactory)	insufficient understanding of some problems
	and inability to apply the acquired
	knowledge is detected;
	5 (satisfactory) – the requirements of the
	study course are met for the most part,
	however insufficient understanding of
	many problems and inability to apply the
	acquired knowledge is detected;
	4 (almost satisfactory) – the requirements
	of the study course are met, for the most
	part, however insufficient understanding of
	some main concepts is detected as well as
	considerable difficulties in the practical
	application of the acquired knowledge are
	stated;
Low	3 (bad) – knowledge is superficial and
(3-1 - negative evaluation)	incomplete; the student is unable to use it in
	specific situations;
	2 (very bad) – superficial and incomplete
	knowledge of only some problems, the most
	part of the study course is not mastered;
	1 (very very bad) – an absence of
	understanding of the main problems of the
	subject matter, almost no knowledge of the
	content of the study course.