
Chapter 18

Cluster Embedding Method with Non-

orthogonal Wave Functions for Simulation

of Nanodevices

E.K. Shidlovskaya

Abstract Applicability of cluster embedding method with non-orthogonal wave

functions for theoretical study of processes in nanodevices has been studied.

Processes in nanodevices are treated in the framework of time-dependent DFT.

We demonstrate that our cluster embedding method is compatible with DFT Kohn-

Sham method and quantum transport theory based on time-dependent DFT. We

conclude that the approach for electric current calculation developed for orthogonal

wave functions may be applied for non-orthogonal wave functions if we transform

the initial equations assuming that overlaps are small (S2 � S).

Keywords Embedded molecular cluster model • Non-orthogonal wave functions

• Quantum transport theory • Time-dependent DFT • Current in nanodevices

18.1 Introduction

It is expected that nanodevices will bring revolutionary changes into electronics with

its all potential applications including monitoring of ecological security. Creation of

nanodevices is a rapidly developing field of science and technology. To design

nanodevices we should be able to perform their theoretical modeling. One of the

approaches to theoretical description of nanodevices is quantum transport theory

developed by Gross with co-workers [1–3]. This approach is based on the time-

dependent density functional theory (TDDFT) and cluster model.
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When we theoretically describe nanodevices, we have to treat the whole

quantum system as two subsystems: a small finite fragment of the system

containing a nanodevice (cluster) and the rest of the system containing electrodes.

The problem of the “cluster in the field of the rest of the system” is successfully

solved in the framework of the embedded molecular cluster (EMC) model [4] with

orthogonal wave functions. Such cluster embedding methods are well-developed

[4–7] and successfully used for quantum-chemical simulations [6, 7].

There are many approaches [8–11] to construction of mutually orthogonal

localized one-electron wave functions (Wannier functions). However, non-

orthogonal one-electron wave functions of the system can be more localized than

orthogonal ones. (See, for example, work of Anderson [12].)

Localization is very important for practical applications, because the expansion

of a more localized wave function requires a smaller basis set. If we consider

two overlapping electron densities and describe them by mutually orthogonal wave

functions, we get wave functions with oscillating “tails” and need additional basis

to reproduce these oscillations. But if we permit wave functions to be non-

orthogonal, we may describe the overlapping densities by smooth wave functions

without oscillations. Therefore, we need no additional basis. It is a significant

advantage of non-orthogonal wave functions and it is the reason for a renewed

interest in methods based on localized non-orthogonal wave functions. There are

some recent approaches of this kind. For example, Kantorovich with co-workers

[13] has proposed procedure of obtaining self-consistent localized non-orthogonal

one-electron wave functions for perfect crystals. Iwata with co-workers [14]

is developing the approach for molecular interaction treatment using Hartree-

Fock-Roothaan equations without orthonormality constraints.

These reasons have stimulated us to develop cluster embedding scheme, treating

the cluster embedding problem in the framework of one-electron approximation

with non-orthogonal wave functions [15–18]. We have studied cluster embedding

equations obtained in the framework of direct variational approach [15–17], when

the total energy of the whole system (cluster + the rest of the system) is expressed in

terms of non-orthogonal one-electron wave functions and equations for the cluster

wave functions obtained directly from variation of the total energy expression.

We have compared this approach with the approach of the theory of pseudopo-

tentials [16, 18], when the total energy of the system is expressed in terms of

mutually orthogonal wave functions. In the framework of the theory of pseudopo-

tentials equations for the cluster wave functions are derived under orthogonality

constraints and then these equations are transformed to obtain non-orthogonal

solutions. Working in the framework of the direct variational approach we have

proposed embedding equations for the case when mutually orthogonal one-electron

wave functions of a cluster are not orthogonal to the wave function of the rest of the

system [15, 16]. Using these equations we have developed a modified cluster

embedding scheme and have demonstrated that consistent implementation of this

scheme may radically reduce boundary effects in the EMC model [15, 19].

Our embedding scheme is based on Hartree-Fock (HF) method. In the last years

HF one-electron equations are rarely used. Calculations usually are carried out in the
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framework of the density functional theory (DFT) with one-electron Kohn-Sham

equations [20, 21]. Moreover, for theoretical modeling of nanodevices we would

apply the quantum transport theory based on DFT. Therefore, for our purpose we

should generalize our cluster embedding method on the case of DFT Kohn-Sham

approach. After this generalization we will study the possibility of combining our

cluster embeddingmethodwith TDDFT approach of Gross et al. [1, 2] for simulation

of processes in nanodevices.

18.2 Cluster Embedding Equations

Considering the system of N electrons within one-electron approximation, we may

assume that a many-electron wave function of the system is represented by a single

Slater determinant (it corresponds to calculations of an open shell system by the

unrestricted HF method). A one-determinant wave function is known to be an

invariant with respect to arbitrary non-singular linear transformation of one-electron

wave functions (spin-orbitals) included in the determinant [22]. Non-singular trans-

formation of one-electron wave functions keeps one-electron density unchanged

[22]. It gives us possibility to transform delocalized one-electron wave functions to

localized ones treating our N electron system both on HF and DFT Kohn-Sham

levels.

18.2.1 General Scheme for Variation Procedure

If transformation of delocalized one-electron wave functions to localized ones is

carried out, we may use ideas of EMC model [4] and divide our N electron system

into two subsystems: a cluster of finite size and the remaining system. Then spin-

orbitals of the whole electron system Cij i, i ∈ c + r, may be split into two groups:

cij i, i ∈ c: localized in the cluster region, and ’ij i, i ∈ r: localized in the region of

the remaining part of the system. The total energy of many-electron system

described by non-orthogonal one-electron wave functions on both HF and DFT

Kohn-Sham levels may be presented in the following way:

E ¼
ð
hð1Þrð1j2Þj2¼1d1þ

1

2

ð
gð1; 2Þrð1 1Þj rð2j2Þd1d2þ EXC; (18.1)

where rð1j2Þ ¼ P
i;j2cþr

Cið1Þ S�1ð ÞijC�
j ð2Þ is one-electron density and

Sij ¼ Ci

�� Cj

� � ¼ Ð
C�

i ð1ÞCjð1Þd1 is one-electron wave functions overlapping.

Electron coordinates include both spatial and spin variables, integration is carried

out on both of them.
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The first term in the expression (18.1) is the energy of electron gas in the

external potential; hð1Þ ¼ Tð1Þ þ Vð1Þ includes electron kinetic energy operator

Tð1Þ and Coulomb (electrostatic) potential Vð1Þ created by the nuclei. The

second term in (18.1) is Coulomb (electrostatic) interaction energy of electrons;

gð1; 2Þ ¼ ~r1 �~r2jj �1
is the operator for interaction between electrons. These two

terms are the same for HF method and DFT Kohn-Sham method.

The third term EXC is the exchange-correlation energy of electrons. HF and DFT

Kohn-Sham methods differ only in the way of treating this term.

Variation of the total energy (18.1) is the following:

dE ¼
ð
hð1Þd rð1j2Þð Þ 2¼1j d1þ

ð
gð1; 2Þrð2j2Þd rð1j1Þð Þd1d2þ dEXC: (18.2)

We are searching for the minimum in the total energy of electron system under

condition that the wave functions of the remaining system are known and are not

varied. Because wave functions of the remaining system are frozen, d’i ¼ 0, i ∈ r.

Hence, electron density variation is

d rð1j2Þð Þ ¼
X
i2c

X
j2cþr

dcið1Þð Þ S�1
� �

ij
C�

j ð2Þþ

þ
X
i2cþr

X
j2c

Cið1Þ S�1
� �

ij
dc�

j ð2Þ
� �

þ
X

i;j2cþr

Cið1Þ d S�1
� �� �

ij
C�

j ð2Þ: (18.3)

According to the definition of the inverse matrix S�1S ¼ I, where I is the unit

matrix. Therefore, on the one hand, dI ¼ 0 while on the other hand,

dI ¼ d S�1Sð Þ ¼ S�1dSþ d S�1ð ÞS. Taking this into account, we get the following

formula:

d S�1
� �� �

ij
¼�

X
k2c

X
l2cþr

S�1
� �

ik
dck j Clh i S�1

� �
lj
�

�
X
k2cþr

X
l2c

S�1
� �

ik
Ck j dclh i S�1

� �
lj
: (18.4)

18.2.2 HF Approach

For the HF approach, the exchange-correlation energy term contains only the

exchange energy:

EXC ¼ � 1

2

ð
gð1; 2Þrð1j2Þrð2j1Þd1d2:
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Its variation is

dEXC ¼ �
ð
gð1; 2Þrð1j2Þd rð2j1Þð Þd1d2; (18.5)

and for the HF approach, our variation procedure gives the following system of

equations [15, 16]:

X
l2cþr

ð1� rÞF Clj i S�1
� �

lk
¼ 0; k 2 c, (18.6)

where r is one-electron density operator,

r ¼
X

i;j2cþr

Cij i S�1
� �

ij
Cj

� ��; (18.7)

F is Fock operator,

F cð1Þj i ¼ hð1Þ cð1Þj i þ
ð
rð2j2Þgð1; 2Þ cð1Þj id2�

�
ð
rð1j2Þgð1; 2Þ cð2Þj id2: (18.8)

Equations 18.6 are obtained by substituting expression (18.4) in the formula

(18.3) and formula (18.3) in the expression (18.2) for the total energy variation,

taking into account that variation of exchange-correlation energy is given in

formula (18.5) and the requirement is that the total energy variation dE is zero for

arbitrary variations of the cluster wave functions.

Variational equations (18.6) may be further transformed to eigenvalue and

eigenvector problem equations, following the procedure described in our works

[15, 16]. As a result, we get the following equations:

1� Prð ÞF 1� Prð Þþ cij i ¼ Ei cij i; i 2 c, (18.9)

where operator Pr is defined in the following way:

Pr ¼
X
i2r

X
j2cþr

’ij i S�1
� �

ij
Cj

� ��: (18.10)

Equations 18.9 present not the general, but still, very important case of equations

for mutually orthogonal cluster wave functions staying to be non-orthogonal to the

rest of the system. Using cluster embedding equations (18.9) and the HF calculation

method we have developed a modified cluster embedding scheme and have

demonstrated that the consistent implementation of this scheme may radically

reduce boundary effects in EMC model [15, 19].
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18.2.3 DFT Kohn-Sham Approach

Let us consider what our variation procedure will give us when we use DFT

Kohn-Sham approach. The electron gas kinetic energy and the energy of Coulomb

interaction among electrons and electrons with the nuclei are the same for HF

and Kohn-Sham methods. The only difference is due to the exchange-correlation

energy EXC. If we express the variation of the exchange-correlation energy in the

local form:

dEXC ¼
ð
VXCð1Þd r 1 2jð Þð Þ 2¼1d1j ; (18.11)

where VXCð1Þ is the hermitean operator, then, considering that the total energy

variation (18.2) is zero for arbitrary variations of the cluster wave functions, and

taking into account that one-electron density variation is given by formula (18.3)

and d S�1ð Þ is given by formula (18.4), we get equations of the form (18.6), where

operator F is expressed in the following way:

Fð1Þ ¼ hð1Þ þ
ð
rð2j2Þgð1; 2Þd2þ VXCð1Þ: (18.12)

Looking at formula (18.12) it is easy to see that operator F is Kohn-Sham one-

electron Hamiltonian [20, 21].

There is no need to restrict ourselves by the local form of exchange-correlation

functional and by formula (18.11) for its variation. We may consider non-local

functionals, too. In this case variation of the exchange-correlation energy can be

written in the following way:

dEXC ¼
ð
wð1; 2Þd rð2j1Þð Þd1d2: (18.13)

If after permutation of coordinates in wð1; 2Þ we get hermitean conjugate:

wð2; 1Þ ¼ wþð1; 2Þ, then for the non-local exchange-correlation functional our

variation procedure will also give Eq. 18.6 with Kohn-Sham Hamiltonian (18.12),

where exchange-correlation operator VXCð1Þ is non-local:

VXCð1Þ cð1Þj i ¼
ð
wð1; 2Þ cð2Þj id2: (18.14)

It is easy to see that the exchange operator in HF equations is a special case of

non-local exchange-correlation operator (18.14) with wð1; 2Þ ¼ �gð1; 2Þrð1j2Þ.
Thus, on both HF and DFT Kohn-Sham levels, variational equations look the

same. The only difference is in the form of one-electron effective Hamiltonian F.
For the HF method we have Fock operator (18.8). For Kohn-Sham method we have
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Kohn-Sham Hamiltonian (18.12), where the exchange-correlation operator may

contain both a local part and a non-local part (18.14). Like in the HF case,

transformation of variational equations into eigenvalue equations will give

Eq. 18.9, because the transformation procedure does not depend on the form of

one-electron Hamiltonian F.
We see that cluster embedding equations are the same for HF and DFT Kohn-

Sham methods. It means that being developed for the HF method, our embedding

scheme is also compatible with DFT Kohn-Sham approach and can be combined

with time-dependent DFT.

18.3 Quantum Transport Theory and Cluster Model

In the previous section we have demonstrated that our embedding scheme is

compatible with DFT Kohn-Sham approach. Therefore, we can apply EMC

model for theoretical study of transport phenomena in quantum systems combining

our cluster embedding method with TDDFT, following the ideas of Gross et al.

[1, 2]. Our goal is the method for theoretical treatment of processes in nanodevices

including calculations of electrical current and other properties significant for

electronics.

In the framework of TDDFT, time-dependent one-electron density is constructed

from Kohn-Sham one-electron wave functions:

rðr; tÞ ¼
X
j

w�j ðr; tÞwjðr; tÞ: (18.15)

The wave functions satisfy time-dependent Schr€odinger equation:

i w
� ðr; tÞ ¼ HðtÞwðr; tÞ; where w

� ðr; tÞ ¼ @wðr; tÞ
@t

: (18.16)

Following notations of Gross et al., we consider that a nanodevice consist of the

central part C, the left electrode L, and the right electrode R. In EMC model [4] the

central part C may be treated as a cluster while the electrodes L and R should be

treated as the rest of the system. The time-dependent one-electron wave function

may be expressed as a linear combination of the localized in the regions C, L and R
wave functions with time-dependent coefficients:

wðr; tÞ ¼
X
n

cnðtÞCnðrÞ ¼
X
n2C

cnðtÞcnðrÞ þ
X

n2LþR

cnðtÞ’nðrÞ: (18.17)
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Substituting this expansion in formula (18.16) and collecting coefficients cnðtÞ in
column vector wj i, we obtain the following matrix equations:

iS wj i
�

¼ H wj i; (18.18)

where S is the overlap matrix, Smn ¼ Cm j Cnh i ¼ R
C�

mð1ÞCnð1Þd1, and H is

Hamiltonian matrix, Hmn ¼ Cmh jH Cnj i.
The equation system (18.18) can be transformed to the following form:

i wj i
�

¼ ~H wj i; where ~H ¼ S�1H: (18.19)

The method proposed by Gross et al. [1, 2] can be applied for Eq. 18.19 if

non-diagonal parts of effective Hamiltonian matrix between the left and the right

electrodes present zeroes: ~HLR ¼ ~HRL ¼ 0. Let us see whether it is true or not.

We may assume that the wave functions of the left electrode do not overlap with

the wave functions of the right electrode, SLR ¼ SRL ¼ 0. It is good approximation

for the localized wave functions. According to formulas (18.A5, 18.A6, 18.A7,

18.A8, 18.A9, and 18.A10) of the Appendix, under this assumption, inverse overlap

matrix takes the following form:

S�1 ¼
QC �QCSCLS

�1
L �QCSCRS

�1
R

�S�1
L SLCQ

C S�1
L þ S�1

L SLCQ
CSCLS

�1
L S�1

L SLCQ
CSCRS

�1
R

�S�1
R SRCQ

C S�1
R SRCQ

CSCLS
�1
L S�1

R þ S�1
R SRCQ

CSCRS
�1
R

0
@

1
A:

(18.20)

Starting from the proposed by Gross Hamiltonian

H ¼
HC HCL HCR

HLC HL 0

HRC 0 HR

0
@

1
A

for the non-diagonal part of our effective Hamiltonian ~H we get

~HCL ¼ QCðHCL � SCLS
�1
L HLÞ; (18.21)

~HRL ¼ �S�1
R SRCQ

CðHCL � SCLS
�1
L HLÞ; (18.22)

~HCR ¼ QCðHCR � SCRS
�1
R HRÞ; (18.23)

~HLR ¼ �S�1
L SLCQ

CðHCR � SCRS
�1
R HRÞ: (18.24)

We consider that the wave functions of the left electrode do not overlap with the

wave functions of the right electrode. Hence, HLR ¼ HRL ¼ 0 is a good approxima-

tion in our case. The question arises: will ~HLR ¼ ~HRL ¼ 0 be as good too?
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If we assume that the overlaps of the wave functions in the nanodevice

central part with the electrodes SLC and SRC are small (S2 � S), then, comparing

formula (18.21) with (18.22) and formula (18.23) with (18.24) we may conclude

that ~HRL � ~HCL and ~HLR � ~HCR. It means that ~HLR ¼ ~HRL ¼ 0 is a good approxi-

mation. Therefore, for Eq. 18.19 we may apply the method proposed by Gross et al.

[1, 2]. It means that using this method we may get the formula for electric current

in a nanodevice treating the nanodevice in the framework of our cluster model with

non-orthogonal wave functions.

18.4 Summary and Conclusions

We have studied the applicability of our cluster embedding method with non-

orthogonal wave functions for theoretical modeling of processes in nanodevices.

The processes in nanodevices have been treated in the framework of time-

dependent DFT. We have demonstrated that our cluster embedding method based

on HF calculation scheme is compatible with DFT Kohn-Sham calculation scheme.

Cluster embedding equations remain the same if instead of Fock operator we use

Kohn-Sham Hamiltonian. Therefore, our cluster embedding model is compatible

with the time-dependent DFT and the quantum transport theory based on TDDFT.

We have treated the possibility to combine our cluster embedding method with the

approach for electric current calculation developed by Gross with co-workers [1, 2].

Gross’ method implies that the wave functions of the central part of a nanodevice

are orthogonal to the wave functions of the electrodes. We have demonstrated that the

approach for the electric current calculation developed for orthogonal wave functions

can be applied for non-orthogonalwave functions if we transform the initial equations,

assuming that the overlaps between wave functions are small (S2 � S). Therefore,

using this assumption, we can combine our cluster embedding method with the

approach of Gross et al. for calculations of the electric current in nanodevices.

Thus, we can conclude that the embedded cluster model with non-orthogonal

wave functions is applicable for theoretical modeling of nanodevices.

Appendix

According to the results presented in the Appendices of our works [15–18], when

we divide the quantum system into two subsystems and write the matrix of one-

electron wave functions overlaps and its inverse matrix in a block form:

S ¼ S1 S12
S21 S2

	 

; S�1 ¼ Q ¼ Q1 Q12

Q21 Q2

	 

;
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then, for the inverse matrix we get the following formulas:

Q1 ¼ S1 � S12S
�1
2 S21

� ��1 ¼ S�1
1 þ S�1

1 S12Q
2S21S

�1
1 ; (18.A1)

Q12 ¼ �Q1S12S
�1
2 ; Q21 ¼ �S�1

2 S21Q
1; (18.A2)

Q2 ¼ S�1
2 þ S�1

2 S21Q
1S12S

�1
2 : (18.A3)

We apply these formulas to get S�1 when we have three subsystems: C (the

cluster with a nanodevice), L (the left electrode), and R (the right electrode). If we

choose that subsystem 1 is cluster C then subsystem 2 is the electrodes L + R.
Therefore, according to our notations,

S1 ¼ SC; Q1 ¼ QC; S2 ¼ SL SLR
SRL SR

	 

; Q2 ¼ QL QLR

QRL QR

	 

:

Assuming that the wave functions of the left electrode do not overlap with the

wave functions of the right electrode, SLR ¼ SRL ¼ 0, we have

S2 ¼ SL 0

0 SR

	 

; S�1

2 ¼ S�1
L 0

0 S�1
R

	 

: (18.A4)

According to formula (18.A3),

Q2
mn ¼ S�1

2

� �
mn

þ
X

i;j2LþR

S�1
2

� �
mi

S21Q
1S12

� �
ij
S�1
2

� �
jn
:

Substituting (18.A4) in the last formula, we get the following results:

QL ¼ S�1
L þ S�1

L SLCQ
CSCLS

�1
L ; (18.A5)

QR ¼ S�1
R þ S�1

R SRCQ
CSCRS

�1
R ; (18.A6)

QLR ¼ S�1
L SLCQ

CSCRS
�1
R ; (18.A7)

QRL ¼ S�1
R SRCQ

CSCLS
�1
L : (18.A8)

According to formulas (18.A2),

Q12
mn ¼ �

X
i2LþR

Q1S12
� �

mi
S�1
2

� �
in
:

200 E.K. Shidlovskaya



Substituting (18.A4) in the last formula, we obtain the following results:

QCL ¼ �QCSCLS
�1
L ; QCR ¼ �QCSCRS

�1
R : (18.A9)

In the same way we can get

QLC ¼ �S�1
L SLCQ

C; QRC ¼ �S�1
R SRCQ

C: (18.A10)
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