
Chapter 26

Diffusion Process in Quasi-One-Dimensional
Structures as Elements of Novel Nanodevices

J.R. Kalnin

Abstract The effective diffusion coefficient in two-phase one-dimensional model

with the periodical distribution of inclusions in the effective medium approximation

is calculated and generalization about a quasi-one-dimensional case is formed.
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26.1 Introduction

In several papers the expression for the effective diffusion coefficient in the scope

of generalized Maxwell-Garnett theory has been considered [1, 2]. Different

concentrations of diffusing particles in matrix and inclusions require corresponding

conditions on the boundary matrix-inclusion.

It has been ad-hoc assumed that a concentration jump is equal to the average

concentration ratio. Further in the text we show that this result strictly follows from

the effective medium approximation and that one-dimensional approach can be

used in solving quasi-one-dimensional problems after performing some computer

simulation.
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26.2 Effective Medium Approximation in One-Dimensional
Diffusion Model

Let us consider one-dimensional heterogeneous medium: periodically distributed

regions with the diffusion coefficient D1 in matrix and the diffusion coefficient D2

in inclusions. In the effective medium approximation we replace one-dimensional

sample by a representative element consisting of a matrix and one inclusion,

which are embedded into the effective media with the diffusion coefficient Deff

(Fig. 26.1).

The corresponding concentrations are ceff, c1, c2 and c3.
The external concentration field ceff ¼ �gx with a constant gradient g is applied

in the sample. Applying the solution of the stationary one-dimensional diffusion

equation gives

ceff ¼ �gx;

c1 ¼ a1xþ b1; ðregion IÞ
c2 ¼ a2xþ b2; ðregion IIÞ
c3 ¼ a3xþ b3 region IIIð Þ:

(26.1)

We choose the boundary conditions in the form

ceff
��
x¼x1

¼ 1

w
c1jx¼x1

;

c1jx¼x2
¼ 1

a
c2jx¼x2

;

c2jx¼x3
¼ ac3jx¼x3

;

c3jx¼x4
¼ wceff

��
x¼x4

(26.2)

Fig. 26.1 Representative element (I-II-III) in one-dimensional effective media
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and

Deff
@ceff
@x

����
x¼x1

¼ D1

@c1
@x

����
x¼x1

;

D1

@c1
@x

����
x¼x2

¼ D2

@c2
@x

����
x¼x2

D2

@c2
@x

����
x¼x3

¼ D1

@c3
@x

����
x¼x3

D1

@c3
@x

����
x¼x4

¼ Deff
@ceff
@x

����
x¼x4

:

(26.3)

The coefficient ain Eq. 26.2 characterizes the concentration jump on the boundary

inclusion–matrix and the coefficient wdenotes that there also exists a concentration

jump on the boundary matrix–effective medium. Deff can be determined from the

systems of equations (26.2) and (26.3) inserting into them (26.1) and demanding

the existence of nontrivial solution.

To simplify this equation, we assume that x4� x1 ¼ 1, x3� x2 ¼ f, x2 ¼ (1� f)/
2 and x3 ¼ (1 + f)/2. The obtained result is then

Deff ¼ D1w

ð1� f Þ þ f D1

D2a

� � (26.4)

with

w ¼ 1

ð1� f Þ þ afð Þ (26.5)

In order to determine the coefficient a, one additional equation is needed. We get

this equation on the condition that the average particles concentration in the

representative region should be equal to the average particles concentration in the

effective medium of the same length. Thus we have

ceff ¼
ðx4

x1

ceff dx ¼
ðx2

x1

c1dxþ
ðx3

x2

c2dxþ
ðx4

x3

c3dx ¼c1 þ c2 þ c3: (26.6)

Inserting c1, c2 and c3 from (26.1) into (26.6), we receive

a ¼ c1
c2

: (26.7)

Equation 26.6 has been postulated in our papers [1, 2].

26 Diffusion Process in Quasi-One-Dimensional Structures as Elements. . . 293



Finally, for the effective diffusion coefficient Deff we have

Deff ¼ D1

1� f þ c2
c1
f

� �
ð1� f Þ þ D1c1

D2c2
f

� � : (26.8)

If c1 ¼ c2, we get a well known result

Deff ¼ D1D2

D1f þ D2ð1� f Þ : (26.9)

26.3 Quasi-One-Dimensional Diffusion Example

We consider there quasi-one-dimensional diffusion in the model sample of channels

and spikes with the diffusion coefficient D (Fig. 26.2).

One representative element is shown in Fig. 26.3.

A particle diffusing through the sample takes a long time in spikes. If the height

of the spike grows, the diffusing particle will be trapped in the spike for an

extended time. It is obvious that the effective diffusion coefficient will decrease

because of spikes. We can approximate the particle diffusion in the spike (as soon

as we are interested in the one-dimensional diffusion through the sample) as one-

dimensional diffusion with the different diffusion coefficient, which we denote

D2. The diffusion coefficient in the channel is denoted further by D1. Thus, we

replace the representative element by some effective quasi-one-dimensional

media (Fig. 26.3).

Fig. 26.2 Quasi-one-dimensional sample. L period
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The concentration of diffusing particles in the region (a, b) will differ from that

in the channel. We denote this concentration by c2. (Henceforth, we denote average

concentrations as c1 and c2.)

Now we can calculate effective diffusion coefficient through the sample as

Deff

D1

¼ 1

1� f þ c2
c1
f

� �
ð1� f Þ þ D1c1

D2c2
f

� � ; (26.10)

where f ¼ (b � a)/L. We can assume that c2/c1 ¼ H/h, then Deff depends on H
and h, Deff also depends on the form of spike. A computer simulation is a possible

way to obtain the Deff and D2 values. The results received in the computer

simulation, may be used for the estimation of effective diffusion coefficients in

practical cases.

We have simulated the diffusion of particles through a quasi-one-dimensional

sample using the Monte Carlo method. The simulation has been carried out in the

representative element with the periodic boundary conditions along the x axes.

Inside the representative volume, particles are reflected from the channel and spike

borders. The mean free path of particle l has been chosen l ¼ 0.2. The particle

performs two-dimensional random walking with the equal probability to jump to

any direction. Deff is calculated by formula

Deff ¼ <x2>

2Nt
; (26.11)

where <x2> is the mean square displacement of a diffusing particle, N – the

number of jumps, t-jump time, D1 ¼ l2/(4t). The number of diffusing particles is

10,000, and one particle history has been varied from 50,000 to 600,000 jumps

long. The estimated error is 3%. The results of computer simulation are presented

in Fig. 26.4.

It is seen from Fig. 26.4, that Deff and D1 are strongly correlated.

Fig. 26.3 On the left – representative element; the spike begins at a and ends at b. H the height

of spike, h channel height, L the length of representative element. On the right – equivalent

quasi-one-dimensional model
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26.4 Conclusions

A closed formula for the effective diffusion coefficient in the heterogeneous media

with the periodically distributed inclusions has been developed. It has been shown

that the previously [1, 2] accepted ad-hoc assumption about concentrations on the

boundary matrix-inclusion follows in a self consistent way from the effective

medium approximation. Simple quasi-one-dimensional models can be considered

as one-dimensional in an effective manner. Simple computer simulation can help to

determine the necessary parameters for the construction of practically usable

effective diffusion coefficients.
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Fig. 26.4 Results of

computer simulation. Deff/D1

(circles) and D2/D1

(triangles) dependence on H/
h. h ¼ 1, f ¼ 0.4, a ¼ 3,

b ¼ 7, L ¼ 10
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