
Chapter 8

Cylindrical Wave Method for Pure

and Doped Nanotubes

P.N. D’Yachkov

Abstract The study results on the electronic structure of single-walled and

double-walled nanotubes, both pure and doped, isolated and embedded into a

crystal matrix and calculated using a linear augmented cylindrical wave method

are presented. The method utilizes the local density functional approximation and

the muffin-tin approximation for the electron potential and is implemented as a

quantum-mechanical program package.
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8.1 Introduction

Carbon nanotubes are an important class of nanomaterials. Understanding the

electronic properties of nanotubes is important for several current and developing

materials-science applications. Theoretical studies of the nanotubes electronic

structure have received much attention since 1992, when the first calculations for

the band structures of single-wall nanotubes (SWNTs) were carried out using the

linear combination of atomic orbitals (LCAOs) p-electronic technique. We develop

a new quantum-mechanical method for calculating the electronic structure of

single-wall, double-wall, and embedded nanotubes both perfect and having

impurities. This is the linear augmented cylindrical wave (LACW) method. The

LACW technique, as applied to nanotubes, has an advantage over the conventional
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LCAO and plane-wave pseudopotential methods. The main argument for using

cylindrical waves is to account for the cylindrical geometry of the nanotubes in

an explicit form that offers obvious advantages.

8.2 Single-Walled Armchair and Zig-Zag Nanotubes

In the LACW method, a one-electron model is used, implying that a many-electron

wave function is described by the determinant of one-electron functions. Then, the

problem of calculation of electron levels is reduced to solution of the one-electron

Schr€odinger equation, where Hamiltonian includes the operators of the kinetic and

potential energy of electrons. In calculations of a many-electron system, the key

problem is the choice of electron potential. In the LACW method, this potential is

constructed with the use of the muffin-tin (MT) approximation and the local density

functional approximation for exchange interaction. The MT approximation implies

that the crystal space is divided into regions of two types: atomic regions and

interatomic regions. Each atom of a polyatomic system is surrounded by a sphere

(MT sphere). In the MT spheres, the potential is taken as spherically symmetric. In

the interatomic region, the electron potential is taken to be constant. This potential

is chosen as the energy reference. The radii of MT spheres are selected so that the

spheres of neighboring atoms are in contact. Such a choice is physically rather

evident: information on the chemical nature of atoms constituting a polyatomic

system is contained only inside the MT spheres. In a nanomaterial, the movement of

electrons is restricted by its dimensions and geometry. In a nanotube, electron

motion is confined to an approximately cylindrical layer with a thickness on the

order of the doubled van der Waals radius of the atom. Correspondingly, in the

LACWmethod, the motion of electrons in the space between MT spheres is limited

by two cylindrical barriers impenetrable for electrons: the external barrier Oa

of radius a and the internal barrier Ob of radius b which are chosen so that the

region confined by these barriers accommodates a significant portion of the

electron density of the system under consideration. Such a potential is referred to

as a cylindrical MT potential.

To calculate the potential in the MT spheres, the electron density distribution

r(r) of a system is constructed as a superposition of electron densities of its atoms.

Inside the MT spheres, its spherically symmetric part r(r) is taken. The electrostatic
potential created by the distribution r(r) is determined from the solution of the

Poisson equation. The Coulomb potential in the MT spheres is obtained by adding

the electrostatic potential created by the positive charges of atomic nuclei. The

electron density distribution r(r) is also used for calculations of the exchange

interaction in the local density functional approximation.

In the interspherical region, the basis functions are the solutions of the

Schr€odinger equation for free movement of electrons inside an infinite tube with

outer and inner radii a and b, respectively. When expressed in rydbergs
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(Planck constant �h ¼ 1, electron mass m ¼ 1/2, electron charge e ¼ ffiffiffi
2

p
) and

cylindrical coordinates {Z,F,R}, this equation takes the form [1–5]:
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�C Z;F;Rð Þ ¼ EC Z;F;Rð Þ
(8.1)

The potential U(R), determining the region in which electrons of an isolated

nanotube are allowed to move, takes the form

UðRÞ ¼ 0; b � R � a
1; R<b;R>a

:

�
(8.2)

The solution of Eq. 8.1, taking into account Eq. 8.2, has the form

CðZ;F;RÞ ¼ CPðZÞCMðFÞCMNðRÞ. Here,

CPðZÞ ¼ 1ffiffiffi
c

p exp½iðk þ kPÞZ�;kP ¼ ð2p=cÞP; P ¼ 0;�1;�2; . . . (8.3)

is the wave function that describes the free movement of an electron along the

translational symmetry axis Z with the period c. The wave vector k belongs to the

one-dimensional Brillouin zone: � p=c � k � p=c. The function

CM Fð Þ ¼ 1ffiffiffiffiffiffi
2p

p eiMF; M ¼ 0;�1;�2; . . . (8.4)

describes the rotation of the electron about the symmetry axis of the system, and the

function CMNðRÞ, determining the radial movement of the electron, is the solution

of the equation

� 1

R

d

dR
R

d

dR
þM2

R2

� �
CMNðRÞþ

þ UðRÞCMNðRÞ ¼ E Mj j;NCMNðRÞ: (8.5)

Here, N is the radial quantum number and E Mj j;N is the energy spectrum; the

energy

E ¼ ðk þ kPÞ2 þ E Mj j;N; (8.6)

corresponds to the wave function C (Z, F, R). At b � R � a, Eq. 8.6 is written as

d2

dR2
þ 1

R

d

dR
þ k2Mj j;N �M2

R2

� �
CMNðRÞ ¼ 0; (8.7)
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where k Mj j;N ¼ E Mj j;N
	 
1=2

. After substituting kR ¼ x and C(R) ¼ y(x) into

Eq. 8.7, it reduces to the Bessel equation. Its solutions are referred to as cylindrical

functions of the Mth order. Any solution of the Bessel equation can be represented

as a linear combination of cylindrical Bessel functions of the first JM and second

YM kinds:

CMNðRÞ ¼ CJ
MNJM k Mj j;NR

� �þ CY
MNYM k Mj j;NR

� �
: (8.8)

In Eq. 8.10, CJ
MN and CY

MNare constants chosen so as to ensure the normalization

of the wave function CMNðRÞ,

ða

b

CMNðRÞj j2 RdR ¼ 1; (8.9)

and its vanishing at the interior and exterior potential barriers. Thus, the basis

function C (k, P, M, N) in the OII region in the general cylindrical coordinate

system takes the form

CII k;P;M;Nð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pc

p exp i KPZ þMFð Þf g�

� CJ
MNJM k Mj j;NR

� �þ CY
MNYM k Mj j;NR

� � �
(8.10)

Here, KP ¼ k þ kP.
Inside the MT sphere a in the local spherical coordinate system {r, y, j}, the

basis function is expanded in spherical harmonics Ylmðy; ’Þ [1, 2]:

CIa r; y; ’ k;P;M;Njð Þ ¼
X1
l¼0

Xl

m¼�l

Almaula r;Elað Þ þ Blma _ula r;Elað Þ½ �Ylm y; ’ð Þ: (8.11)

In Eq. 8.20, ula is the solution of the radial Schr€odinger equation in the MT

sphere a for the energyEla, and _ula ¼ @ula=@E½ �Ela

HMTaulaðrÞ ¼ ElaulaðrÞ: (8.12)

Inside the MT sphere of radius ra, the ula function is taken to be normalized and

the ulaðrÞ and _ulaðrÞ functions are orthogonal.
The desired solutions of the Schr€odinger equation must be everywhere continu-

ous and differentiable; therefore, to construct basis functions, the solutions of the

wave equation for the interspherical region and MT spheres should be sewn

90 P.N. D’Yachkov



together. This can be achieved by selecting the coefficients Alma and Blma in

Eq. 8.11. A major mathematical difficulty here is that function (8.10) is expressed

in a general cylindrical coordinate system and function (8.11), in a local spherical

system. However, using the theorem of addition for cylindrical functions, we can

express CII through the cylindrical coordinates Za, Fa and Ra of the sphere a and

the local spherical system r, y, j:

CIIa r; y; ’ k;P;M;Njð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pc

p exp i KPZa þMFað Þf g�

� exp iKPrcosyf g �1ð ÞM�

�
Xþ1

m¼�1
CJ
MNJm�M k Mj j;NRa

� �þ CY
MNYm�M k Mj j;NRa

� � �

� Jm k Mj j;Nrsiny
� �

eim’: (8.13)

Now, the coefficients Alma and Blma overlap and Hamiltonian integrals can be

readily calculated that permits determination of the electron dispersion curves E(k)
of nanotube from a secular equation.

Figure 8.1 shows the band structure for the (12, 12) carbon nanotube. The

computation results show that the carbon nanotube has a metal-type band structure

with the Fermi level located at the intersection of two p-bands at the point k ¼ (2/3)

(p/c). The density of states near the Fermi level between the first singularities of

the valence band and conduction band is constant.

In the center of the Brillouin zone, the upper occupied s level GvðsÞ is located
above the upper occupied p level GvðpÞ in all (n, n) carbon nanotubes. In p-electron
models, Sv1 and Sc1 are the boundary singularities of the valence and conduction

bands, respectively, and the minimal gap is E11 ¼ E11ðpp�Þ ¼ EðSv1Þ � EðSc1Þ.
However, as it can be seen in Fig. 8.1, in the center G and at the boundary K
of the Brillouin zone, the lower Gc1ðpÞ and Kc1ðpÞ states are located below the

Sc1 singularity and form a shoulder under the Sc1 peak of the density of states.

The Sv1 � Sc1 gap still corresponds to the direct transition with the minimal energy.

The gap E11ðsp�Þ ¼ E½Gc1ðpÞ� � E½GvðsÞ� corresponds to the second direct

transition.

Figure 8.2 shows the band structure of (13,0) semiconducting carbon nanotube.

The boundary singularities of the valence band (Sv1) and conduction band (Sc1)
correspond to the direct pp* transition at the point G, and the minimum gap

E11 ¼ EðSc1Þ � EðSv1Þ. The dependence of E11 on d�1 is oscillating (Fig. 8): the

E11ðd�1Þ function alternates between two curves corresponding to (n, 0)

nanotubes for which the remainder upon division of n by 3 is equal to 1 or

2 (n mod 3 ¼ 1 and n mod 3 ¼ 2, respectively). The curve mod 3 ¼ 1 is located

above the curve mod 3 ¼ 2. The maximal values E11 ¼ 0:90 eV and

E11 ¼ 0:56 eV for mod 3 ¼ 1 and mod 3 ¼ 2 correspond to the tubules this
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d ¼ 1.25 (n ¼ 16) and 11 Å (n ¼ 14), respectively. A further decrease in tube

diameter leads to a sharp decrease in the gap E11. For carbon nanotubes

with n � 8 (d � 6.3 Å), the gap is closed. Figure 8.3 shows that there is not a

one-to-one correspondence between E11 and d. For example, the E11 gap of about

0.3 eV corresponds to four zigzag tubes with d ¼ 7.8, 8.6, 20.4, and 40.8 Å. The

same is observed for the second direct gapE22 ¼ EðSc2Þ � EðSv2Þ. The amplitudes

of oscillations of the E22ðd�1Þ function are even greater (approximately by a

factor of 3) than in the case of E11ðd�1Þ.
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Fig. 8.1 Band structure of

the (12, 12) nanotube [6]
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8.3 Embedded Single-Walled Carbon Nanotubes

Interest has arisen in the design of hybrid electronic devices in which a carbon

nanotube is embedded into a common bulk semiconductor. Such devices can be

exemplified by electronic elements consisting of a single-walled carbon nanotube

embedded into an epitaxially grown semiconductor heterostructure [8]. Let us

consider how the interaction with a surrounding crystal can change the band

structure of the embedded carbon nanotube.

For an isolated nanotube, there are two vacuum regions Ov, on the outside and

inside of the nanotube. The nanotube and the vacuum regions are separated by

impenetrable (infinite) cylindrical potential barriers. For an embedded nanotube, it is

surrounded on the outside with the region of a single-crystal matrix Om. The barrier

Vm between the nanotube and the matrix is penetrable (finite), so that tunneling of

electrons from the nanotube into the matrix is possible. Let us find the solutions of

the Schr€odinger equation for the orbitals and electronic energies of the nanotube in

the matrix [9, 10]. The matrix is assumed to be a homogeneous medium with a

constant potential Vm, which corresponds to the model of a single-walled carbon

nanotube in contact with an electron gas. Let us consider the case where the barrier

Vm is located noticeably above the Fermi level, so that the matrix has a relatively

weak effect on the states of the valence and conduction bands of the nanotube.

In the interspherical region of the nanotube and in the matrix region, the LACWs

are the solutions of Schr€odinger equation (8.3) with the potential

UðRÞ ¼
0; b � R � a
1; R<b
Vm; R>b

:

8<
: (8.14)

In the matrix region (UðRÞ ¼ Vm), theC Mj jNðRÞ functions must obey the equation:

d2

dR2
þ 1

R

d

dR
� Vm � k2Mj j;N
� �

�M2

R2

� �
C Mj j;NðRÞ ¼ 0: (8.15)

Equation 8.15 at Vm>k2MN is a modified Bessel equation. Its solutions when R
tends to infinity are modified Bessel functions of the first kind KM. Thus, at

b � R � a, the LACWs CMNP have the same analytical form as for a separate

nanotube, whereas, in the matrix region,

CPMNðRÞ ¼ CK
MNffiffiffiffiffiffiffiffi
2pc

p ei kþkPð ÞZeiMFKM kKjMj;NR
� �

; (8.16)

where kKjMj;N ¼ Vm � k2jMj;N
� �1=2

. The analytical expressions for the overlap and

Hamiltonian integrals are presented in Makaev and D’yachkov [ 10].

We studied the effect of the crystalline matrix on the electronic states of metallic

(n, n) nanotubes with 4 � n � 12 and semiconducting (n, 0) nanotubes with 10 �
n � 25 (n is not a multiple of 3). The delocalization of electrons of a metallic (5, 5)
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nanotube into the matrix region leads to a strong disturbance of the band structure.

The most important matrix effect is the shift of the s states located at the point G
toward higher energies. As a result, the top of the valence s band Gv1 is shifted into

the conduction band and s electrons start participating in charge transfer. The point

of intersection of boundary p bands is shifted toward the edge of the Brillouin zone,

and the full width of the valence band is reduced. The metallic character of the band

structure of an armchair nanotube persists. In the pristine nanotube, the Fermi level

is located at a minimum, and tunneling of electrons into the matrix region leads to

the increase in the density of states at the Fermi level.

For semiconducting nanotubes, the minimal gap E11 in the center of the Brillouin

zone is sensitive to the matrix effect. With a decrease of the barrier Vm, the initial

gap E11 of nanotube first slightly increases and then sharply decreases and

collapses. The described matrix effect is common to nanotubes of all diameters.

Metallization of nanotubes under the action of a matrix as predicted by the

model is consistent with the electrical properties of hybrid elements consisting

of single-walled nanotubes in semiconducting layers [8]. In all 20 experimentally

studied elements, the conductivity at room temperature was independent of the gate

voltage; i.e., all nanotubes in crystals turned out to be metallic. (According to

statistics, one-third of the tubes, i.e., about seven nanotubes, should be metallic,

whereas the rest of them, i.e., about 13 nanotubes, should be semiconducting).

8.4 Double-Walled Nanotubes

Double-walled nanotubes are the simplest case of multiwalled nanotubes. They

consist of two concentric cylindrical graphene layers with a strong covalent bond

between C atoms in each layer and a weak van der Waals interaction between the

layers. From the standpoint of nanoelectronics, double-walled nanotubes are of

interest since they are molecular analogues of coaxial cables. The interlayer

interaction in a double-walled nanotube has an effect on both the optical and

electrical properties of a nanocable.

Let us assume that the cylindrical potential barriers on the outer side of the

internal tube and on the inner side of the external tube are penetrable and, hence,

tunneling exchange of electrons between the layers of a double-walled tube is

possible. In the interspherical region of the nanotube and in the classically impene-

trable region between these spheres, the wave functions are the solutions of the

Schr€odinger equation for the free electron motion, which has its previous form

(8.3); however, the potential U(R) in this case has a more complicated form:

UðRÞ ¼
0; b1 � R � a1; b2 � R � a2
1; R<b1;R>a2
Vf ; a1 � R � b2

:

8<
: (8.17)

The potential Vf of the interlayer region Of in this model is the only parameter.

The potential Vf , the same for all double-walled nanotubes, was selected so that the
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level splitting and shifts in the (5,5)@(10,10) nanotube were, on average, 0.5 eV.

In the region Of , UðRÞ ¼ Vf , and the Cf ; Mj j;NðRÞ functions must obey the equation

d2

dR2
þ 1

R

d

dR
� Vf � k2Mj j;N
� �

�M2

R2

� �
Cf ; Mj j;NðRÞ ¼ 0: (8.18)

We calculated the electronic levels of a double-walled nanotube located below

the potential Vf of the classical forbidden region. Equation 8.18 at Vf>k2Mj j;N is a

modified Bessel equation. Its solution is a linear combination of modified Bessel

functions of the first KM and second IM kinds:

Cf :jMj;NðRÞ ¼ CK
M;N

KM kfMj j;NR
� �

þ CI
M;N

IM kfMj j;NR
� �

; (8.19)

where kfMj j;N ¼ Vf � k2Mj j;N
� �1=2

: This radial function should vanish at the inner

and outer barriers of a double-walled tube and should be continuous and differen-

tiable at the boundaries between the inner and outer tubes and normalized that

finally determines the coefficients CK
M,N and CI

M,N and matrix elements of secular

equation for the double-walled nanotubes.

The band structures of double-walled nanotubes can be represented by two

structures corresponding to the state of the inner and outer tubes. The full band

structure of a double-walled nanotube is a superposition of the band structures of

the core and shell tubes [11, 12].

In Fig. 8.4 one can compare the densities of states near the Fermi level of the

single-walled (13, 0) and (22, 0) nanotubes with analogous data for the core (13, 0)

a c

b d

Fig. 8.4 Densities of states near the Fermi level: (a) (13,0) single-walled nanotube, (b) (13,0) core

nanotube nested into the (22,0) nanotube; (c) (22,0) single-walled nanotube, and (d) the outer

(22,0) nanotube with the nested (13,0) tube [11]
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and shell (22, 0) tubes in the double-walled system. In the (13, 0)@(22, 0)

double-walled nanotube the minimal optical gap (0.83 eV) of the smaller single-

walled (13, 0) nanotube is wider than the gap (0.76 eV) of the larger (22, 0) tube.

Our calculations show that the minimal optical gap E11 of the (13, 0) nanotube

increases by 0.19 eV, while that of the (22, 0) nanotube decreases by 0.19 eV after

the formation of the double-walled system. The density of states curves near the

Fermi level show the analogous decrease in the energy shift of the second gap E22

by 0.3 and 0.4 eV for the (13, 0) and (22, 0) nanotubes, respectively. The interlayer

interaction leads to the stronger disturbance of the band structure of the inner

nanotube as compared to the outer one.

8.5 Single-Walled Chiral Nanotubes

Even for small-diameter chiral nanotubes, the number of atoms in the translational

unit cell can be very large. For example, the translational cell of the achiral (10, 10)

nanotube comprises 40 atoms, whereas the translational cell of the chiral (10, 9) tube

of somewhat smaller diameter comprises 1,084 atoms. The basis set required for the

convergence rapidly increases with the increase in the number of atoms in the unit

cell, which renders impracticable calculations of chiral tubes. These facts indicate

that all rather than only translational symmetry properties of nanotubes should be

considered in the development of the theory of their electronic structure [13, 14].

The atomic structure of any single-walled carbon nanotube is determined by two

indices (n1, n2) and the bond length between carbon atoms. The (n1, n2) nanotube
has an axis of symmetry Cn, where n is the greatest common factor of the n1 and n2
indices. Moreover, the arrangement of atoms of the nanotube is determined by

means of screw translations S(o, h). Thus, when rotational and screw symmetries

are considered, the actual rather than translational unit cell of any nanotube contains

only two atoms. If these symmetry properties are taken into account when writing

basis wave functions, the electronic structures of any nanotube can be calculated,

because the actual rather than translational unit cell of any nanotube contains only

two atoms [13, 14].

The cylindrical wave that meets all the symmetry properties is

CII;PMNðZ;F;Rjk; LÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ph=n
p exp i kþ kP � Lþ nMð Þo

h

h i
Z þ Lþ nMð ÞF

n o

� CJ;L
M;N

JLþnM kjLþnMj;NR
� �þ CY;L

M;N
YLþnM kjLþnMj;NR

� �h i
: (8.20)

It was used to calculate the band structures of the chiral tubles. For example, the

band structure of the (8, 7) nanotube is shown in Fig. 8.5.
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8.6 Single-Walled Nanotubes with Point Defects

Based on the LACW method and Green’s function technique, we developed the

first-principles numerical method for calculations of the electronic structure of

the point impurities in single-walled carbon nanotubes [15]. The host nanotubes

electron Green’s function is calculated using a linear augmented cylindrical wave

theory. The Green’s function of the impurities is calculated in terms of matrix

Dyson equation. The impurities are described by the single-site perturbed muffin-

tin potentials in otherwise perfect nanotubes with the rotational and helical

symmetries. Due to the account of these symmetry properties, the method is

developed applicable to any tubule including the chiral ones with point defects

independent of the number of atoms in translational unit cell of the host systems.

We have determined the local densities of states of the boron and nitrogen

impurities in the metallic, semimetallic, and semiconducting tubules. Figure 8.6

shows the typical result of the calculations. It is shown that the boron and nitrogen

defects do not destroy the metallic character of electronic structure of the armchair

tubules. An increase in the density of states in the Fermi energy region is the most

significant effect of boron and nitrogen dopants in the case of metallic and

semimetallic nanotubes. In all the semiconducting tubules, in the vicinity of optical

gap, there is a drastic difference between the effects of the boron and nitrogen

impurities. The boron-related states close the gap of the perfect tubules. In the gap

region, the effects of nitrogen atom are restricted with a minor growth of the local

density of states just below and above the Fermi energy. Beyond the Fermi-energy

region up to the s bottom of the valence bands, the effects of impurities are similar

in all the tubules. As one goes from carbon to the boron, the local density of states

decreases, and the peaks almost disappear, but the nitrogen local density of states is

somewhat greater than that of the carbon.

Fig. 8.5 Band structure (8, 7) nanotube [13]
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8.7 Doping of Nanotubes to Control Their Electromagnetic

Characteristics

In Nemilentsau et al. [16], the effects of nanotubes doping by either boron or

nitrogen on the band structures of the nanotubes were calculated using the

LACW method. A metallization of the semiconducting tubules due to the doping

was deduced. These results have been used to predict the terahertz and the

far-infrared characteristics of small, almost circular bundles of different types of

zigzag tubules, as well as those of the composite materials containing such bundles,

both before and after chemical modification. It has been shown that the axial

surface conductivity of the doped semiconducting nanotubes is significantly higher

than that of the undoped ones and can achieve values comparable to the axial

surface conductivities of metallic tubules. The electromagnetic responses of such

materials for antenna applications can be substantially improved by substitutional

doping due to the doping-caused metallization of the semiconducting tubules.

We have demonstrated the blue-shift of the antenna resonances frequencies in the

Fig. 8.6 Local densities of

states of the ideal and boron

and nitrogen doped (12, 4)

nanotubes [15]

8 Cylindrical Wave Method for Pure and Doped Nanotubes 99



axial-polarizability spectrum of the nitrogen-doped SWNT bundles in comparison

to the pristine ones. Increases in the axial polarizability, antenna efficiency, near-

field electric-field-intensity enhancement factor, and linear conductivity due to

doping have been demonstrated.
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